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ABSTRACT: In this paper we derive higher derivative corrections to the eleven dimensional
supergravity by applying the Noether method with respect to the A/ = 1 local supersym-
metry. An ansatz for the higher derivative effective action, which includes quartic terms
of the Riemann tensor, is parametrized by 132 parameters. Then we show that by the
requirement of the local supersymmetry, the higher derivative effective action is essentially
described by two parameters. The bosonic parts of these two superinvariants completely
match with the known results obtained by the perturbative calculations in the type ITA
superstring theory.

Since the calculations are long and systematic, we build the computer programming to
check the cancellation of the variations under the local supersymmetry. This is an extended

version of our previous paper [I.
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1. Introduction

The requirement of the local supersymmetry is a powerful tool to restrict the form of an
effective action. Especially the action of the supergravity theory in eleven dimensions is
uniquely determined by imposing the V' = 1 local supersymmetry []. The supergravity
theory in eleven dimensions is well recognized as the low energy effective theory of the
M-theory which contains a membrane as a fundamental object. Despite the importance of
the M-theory, the quantization of the membrane has not been accomplished yet. So it is
impossible to calculate scattering amplitudes of membranes, and we do not know so much
about the M-theory beyond the supergravity approximation.

In this paper we pursue the effective action of the M-theory beyond the supergravity by
imposing the N' = 1 local supersymmetry rather than quantizing the membrane. Especially
we want to examine whether the local supersymmetry is powerful enough to determine the
effective action of the M-theory.

Let us briefly review the expected form of the higher derivative corrections to the eleven
dimensional supergravity, which is obtained by using the duality between the M-theory and
the type IIA superstring theory. The perturbative analyses of the scattering amplitudes in
the type ITA superstring theory is one of the important methods to determine the structure
of the higher derivative corrections to the supergravity. According to these analyses the
bosonic part of the corrections to the type ITA supergravity is given by

[’(a’)3 ~ 6_2¢Itree + cjl—loopa (11)

1
Tivee = ttgeR* + m610610634,

1
Tloop = ttgeR* — erperpe Rt — 6610t83347

4.2!
where c is some known constant. The definition of a tensor tg is given in the appendix [B, and
a tensor €19 is a completely antisymmetric tensor with 10 indices. The tree level effective
action is obtained by the four graviton amplitude and the sigma-model computation [B-
5

The first two terms of the one-loop effective action is found by the four graviton
amplitude [f]. The last term in the one-loop effective action is introduced to ensure the
string-string duality between type IIA on K3 and heterotic string on 7% [, B- Under this
duality, the last term is related to the Green-Schwarz anomaly cancellation term in the
heterotic string effective action [f].

The bosonic part of the higher derivative corrections to the eleven dimensional super-
gravity is obtained by lifting the result ([[.]) to eleven dimensions. Thus there are two

candidates which will be invariant under the A" =1 local supersymmetry [g, [L{].
g 1 4 4, 1 4
tstgeR™ — EEntgAR , tstgseR™ + IEnEnBR R (12)
where a tensor €17 is a completely antisymmetric tensor with 11 indices. For the first

part, the supersymmetric counter terms, which are bilinear to the Majorana gravitino, are
derived by applying the Noether method with respect to the local supersymmetry [[L1]-[[5].



For the second part, a complete expression for the supersymmetric counter terms is not
know yet. See ref. [[L6] for some discussions.

Besides the approaches by the string perturbation analyses, the dualities and the
Noether method discussed above, there are other methods to derive the higher deriva-
tive effective action of the M-theory [[4-[Bf]. The famous methods are the analyses by
computing the scattering amplitudes of superparticles in eleven dimensions and the su-
perfield method. Among these approaches we employ the Noether method because this
method maximally respect the local supersymmetry.

The procedure of the Noether method is well known and quite simple. First we pre-
pare the ansatz for the higher derivative effective action in which each term has some
unknown coefficient. Then we consider the variations of the ansatz under the NV = 1 local
supersymmetry. The cancellation of these variations gives simultaneous equations among
the unknown coefficients in the ansatz. By solving these equations, we can determine the
possible forms of the higher derivative effective action. At the same time we also obtain
modifications of the supersymmetric transformation rules. This is the merit of employing
the Noether method.

As we are interested in the question whether the local supersymmetry is useful enough
to determine the effective action of the M-theory, basically we have to prepare the ansatz
as general as possible. Although it is an ideal case, it is impractical to apply the Noether
method to that case because of the enormous calculations. So it is essential to reduce the
number of the terms in the ansatz. In fact we will classify the ansatz by examining the
number of the covariant derivatives after the variation, and drop the terms from the ansatz
which include more than one covariant derivative explicitly.

After the above prescription there still remain so many terms in the ansatz. Actually
we have 132 terms in the ansatz, and the variations are expanded by 264 bases. So it is
almost impossible to execute this program by hand. Thus in order to complete this task,
we often employ a computer programming.

With the aid of the computer programming, we complete the cancellation of the vari-
ations under the local supersymmetry. As a result the number of the parameters in the
ansatz are essentially reduced to only two, and the higher derivative effective action is
given by a linear combination of two superinvariants. Surprisingly these two superinvari-
ants completely match with those in the eq. ([.9). Therefore at this stage it seems that the
N =1 local supersymmetry is powerful enough to determine the structure of the higher
derivative effective action of the M-theory.

The content of our paper is as follows. In section ], we review the derivation of the
eleven dimensional supergravity in detail. In section [, an overview of the procedure to
determine the higher derivative corrections is explained. We give detailed explanations of
the higher derivative corrections in section [ The 132 terms in the ansatz and the variations
of them are explicitly written down. These variations are expanded by the 264 bases, but
20 of them depend on the other terms by nontrivial identities. Almost all the terms in
the ansatz and the bases in the variations are derived both by hand and by the computer
programming independently. In section f| we show that the local supersymmetry essentially
reduce the number of the parameters to only two, and these two superinvariants are exactly



match with the eq. ([.J). We also mention about the modifications of the supersymmetric
transformation rules. Section [ff is devoted to the conclusions and discussions.

2. Review of the eleven dimensional supergravity

2.1 The ansatz for the action and the supersymmetric transformations

The eleven dimensional supergravity is the low energy effective theory of the M-theory
which is considered to be a strong coupling limit of the type IIA superstring theory. The
local supersymmetry of this theory possesses 32 super charges and determines the structure
of the effective action uniquely [g].

In this section we briefly review the derivation of the eleven dimensional supergravity.
First we write down all possible terms for the effective action and the supersymmetric
transformations with arbitrary coeflicients. Then we employ the Noether method to fix
these coefficients by the local supersymmetry. This section is placed to be preliminaries
of later sections where higher derivative corrections to the supergravity are discussed. So
readers who are only interested in the higher derivative corrections may skip this section
and refer this part like an appendix.

The field contents of the supergravity in eleven dimensions are quite simple. First
of all we begin with a vielbein e#, and a Majorana gravitino 1, which have 44 and 128
physical degrees of freedom, respectively. In order to balance the numbers of bosonic and
fermionic states, we need a three-form potential A,,, which has 84 physical degrees of
freedom. The Greek indices, u, v, p, ..., label the coordinates in the curved space-time and
the Latin indices, a,b,c, ..., refer to the local Lorentz coordinates, both of them run from
0 to 10. Spinor indices are neglected to make expressions simple.

The action of the supergravity in eleven dimensions should be constrained by the local
symmetries and the parity invariance, which are listed as

1. The general coordinate invariance and the local Lorentz invariance.
2. The abelian gauge symmetry: A — A + dA.
3. The N =1 local supersymmetry. (2.1)

4. The parity invariance: z'° — —z10, A — —A, ¢ — 4%,

where A, A and 1 are 3-form, 2-form and 1-form, respectively. The normalization of the
forms is defined so as the sum of all the coefficient becomes one, i.e., A = %Auypdx“/\dx” A
dz? for example. The matrices v are the gamma matrices in eleven dimensions and the v'°
generates the parity transformation for the spinor indices. The notation +*1""#» is used to
represent the product of n gamma matrices whose indices are completely antisymmetrized.
The coefficient of each term is %, S0 P12 = %('yplfy” — yP2~P1) for instance.

Due to the local symmetries of 1 and 2 in the eq. (R.I)), the building blocks of the
supergravity action should be a Riemann tensor R“bu,,, a 4-form field strength F,, .., a
covariant derivative D,, which acts only on the local Lorentz indices, and a bilinear term
of the Majorana gravitino @ﬂpl"'p”iﬁ,,. A Chern-Simons term A A F'A F' is an exception,
which include the 3-form potential explicitly but is still gauge invariant.



The requirement of the local supersymmetry 3 in the eq. (R.1]) is useful to determine
the action of the eleven dimensional supergravity. In fact we derive the action uniquely by
employing the Noether method. The parity invariance 4 in the eq. (R.1)) ensures the duality
between the M-theory on S1/Zy and the heterotic superstring theory. As we will see later,
the action obtained by imposing the local supersymmetry satisfies the parity invariance
automatically. For the supergravity this symmetry is not so helpful to determine the
action, but becomes useful to restrict the ansatz for the higher derivative corrections.

Let us consider the ansatz for the Lagrangian. Since the gravitational coupling constant
has the length dimension of [L]%, the ansatz consists of terms with the length dimension of
[L]2. The building blocks have dimensions like R%,,, = [L]72, F,,,,0 = [L]7, D, = [L]7}
and 1, y71"Pnep, = [L]71. So the ansatz for the Lagrangian is written by

Ly = L[eR] + L'[ei/;w@)] + L[eF?) 4 L[eFynp] + Lleer1 AF?] + O (), (2.2)

where we used a simple notation [X]. This represents a set of terms which become X after
ignoring their indices, coefficients and gamma matrices. For example, L[eF17)] includes
a term eF* p”i/jufypgl/zy. Since we examine the cancellation of variations under supersym-
metry transformations up to O(?), we only write the Lagrangian up to O(¢*). The first
three parts are the usual kinetic terms and last two parts are the interaction terms, whose

explicit expressions are given by

LleR] = eR,
_ 1 -
£[€¢¢(2)] = _geprPHunu7
LleF?] = —%eFWpUFW"", (2.3)

E[eFiﬁiﬁ] = CleF“Vpoquurypowu + C26Faﬁ'y§7[)u’7“ya675wu
+ C3eFaﬁ75@u7a676wu + c4eFa6'yM@(u7yaﬁku)a
Lleer1 AF?) = cseel ™™ ™ A o Frugopin Fgoopns -

The coefficients of the kinetic terms are fixed by rescaling the fields. On the other hand,
the coefficients ¢,(n = 1,...,5) should be fixed by the local supersymmetry. The indices
in the brackets ( ) or [ ] are completely symmetrized or antisymmetrized respectively.

The k1711 is an antisymmetric tensor defined as et = el ... ernil €419 and

eM10 = 1 for local Lorentz indices. Other notations we employed here are summarized
in the appendix [A. It is easy to see that the Lagrangian is invariant under the parity
transformation.

Now we introduce a space-time dependent parameter € which transforms as a Majorana
spinor. The dimension of € is [L]l/ 2. and the supersymmetric transformations are assumed

as
doe!'a = =",
501/}# = dlDMG + dZF;ijl'ijle + dgFl'jkl’yijklue + O(¢2), (2.4)
50A,ul/p = d4€7[uu¢p] + d5Er7,ul/powU'



Again terms which do not contribute to the cancellation up to O(«)?) are neglected. The
coefficients d,,(n = 1,...,5) can be fixed by the local supersymmetry. Note that the right
sides of the above equations behave correctly under the parity transformation. This means
that the supersymmetry transformations do not mix parity even terms and parity odd
terms. Therefore the local supersymmetry is compatible with the parity invariance.

2.2 The local supersymmetry

In this subsection we review the variations under the local supersymmetry. The requirement
of the local supersymmetry in eleven dimensions completely determines the coefficients ¢,
and d,, in the ansatz in eqs. (B.J) and the transformation rules (2.4).

In order to examine the local supersymmetry, it is convenient to employ the 1.5 order
formalism. That is, the variations of the Lagrangian by the supersymmetric transforma-
tions are understood as

doLy = edpe! o E(e), + 6601,5HE(¢)“ + edo A E(A)MP + 660wH“bE(w)“ab
= eéoe“aE(e)au‘w(e,w) + eéO&uE(d})ﬂ’w(e,w) + eéOAuupE(A)ﬂyp‘w(e,w)a (2'5)

_1.4C _146C 1. 6L 1. 6C
where E(e)?, = e lm, E@)r =e lm, E(A)r =e 15Awp and E(w)tp = e IW

are field equations. In the first line the spin connection wuab is treated as an independent
field. To go to the second line the vielbein postulate and the field equation for the spin
connection,

Dyet'y + Fuupepa =0,

1 -
E(w)*a = —DV(Qee[”ae“}b) — gewp’yp‘“/’yablby =0, (2.6)
are solved. From these equations the spin connection is expressed like

(wp)ab _ _eauebu epca[uecy] + ebua[y eap} o eaua[uebp]

1- 1- 1- 1-
+ P = 0V + J9M W + Gy gt (27)

Thus the variations for the spin connection are trivially canceled in the case of the super-
gravity. Note, however, that the variations fo the spin connection in the case of higher
derivative effective action do not cancel automatically. We will mention this in section {.
The field equations for the vielbein, the Majorana gravitino and the 3-form potential are
calculated as

1. 1 g
E(e)“u _ 2Raﬂ o BaﬂR _ EFazijuijk + Eeauﬂjklfﬂjkl + O(¢2),
E(p) = =y, + 2c1 FFFoyahy 4 209 gy 9*mapy,
+ 2e3 Fyjray ¥t 4 204 Fyp HyDRapy + O(43), (2.8)

1 .
E(A)MVP = éeuaevbepchFdabc + C56lf1 pz]klmnopﬂjlemnop + O(Ibz)

To derive these equations we neglect the torsion parts which are the order of O(?).



Now let us consider the supersymmetric variations of the ansatz. From the eqs. (R.4)
and (R.§), the variations of the Lagrangian (R.5) under the local supersymmetry transfor-
mations are sketched as

60Lo = [eRey] @ [eFeDy] @ [eDFep] @ [eF2&y), (2.9)

where [X] represents a set of terms which become X after ignoring their indices, coefficients
and gamma matrices. The cancellation of the variation, dgLg = 0, gives linear equations
among the coefficients ¢, and d,,.

The calculations in detail are executed as follows. First of all, the terms in [eReéy)]
come from the variations of L[eR] and L]ey)(9)] in the eq. (B.3). These terms are free from
the 4-form field strength and calculated as

1
[eR&Y)] = (—2 4 dy)e <Rab — §nabR> &by, (2.10)
where we used the relation
1 a
D[ewcd} = ZRab[ch b¢e] + 0(7/13) (211)

The vanishing of the eq. (R.10) leads to d; = 2.
Next, the terms in [eF'éD1)] are derived from the variations of E[eqﬁi/)@)] and L[eFy)]
in the eq. (.3). These terms are linear to the 4-form field strength as

[eFeDy] = +(—6dg — 84dg — 2¢1)eFyj ey "
+ (6dg + 48d3)eFy ey ™ e,
+ (da + 5d3 — 2¢2)eFy ey ™ gy (212)
— 4e3 Fyjiy "™ Dap®
— 4ea Fyjp'y ™5 Dby
These variations are canceled when ¢y = —18ds, co = —%dg, c3 =c4 =0 and dy = —8ds.

The terms in [eDFey| which are also linear to the 4-form field strength come from the
variations of L[eF?] and L[eF] in the eq. (£3).

1 . ,
[eDFey] = + <72d3 + 6d4> eD' Fijey’ !
1 . .
+ 5D Fijaey™ " Y. (2.13)

The cancellation of the right hand sides fixes the coefficients as dy = —432d3 and d5 = 0.
Finally, after tedious gamma calculations, the terms in [eF?€i)] which are quadratic to
the 4-form field strength come from the variations of L[eF?], L[eFy1)] and L[ee;; AF?] in

the eq. (P-9).

1 -
[eF?&p) = + (6 — 3456d§> eFiji PR ey



1 g
+ <_E + 432d§> eFy M ey, (2.14)

+ (—18d3 — 2592d3¢5)e Fapea F pgn ey ™I 9Map;.
These terms vanish when ds = Elél and c5 = —@.

To summarize so far, we started from the ansatz (2.3) and (R.4) with the coefficients
¢, and d,,. The requirement of the local supersymmetry fixes these coefficients uniquely as

1 1 0 0 1
Cl = —— C) = —— Cy = CpL = Cr = —
1 85 2 96, 3 ) 4 ) 5 (144)27
1 1
dy =2, do 13’ ds =1, W4 3, d5s=0 (2.15)

In a similar way we will determine the structure of higher derivative effective action in
subsequent sections.

Before ending this section, for later use, we summarize the relations obtained by de-
forming the field equations.

1
1wy = — 5@+ O(u?),

o = 580~ 757® + OWP),
A Detbas = 397 Wi Rabet =1 V1o R — Dy — 576Dy® + O, (2.16)
D = 37 Rabea — 5 R0 — 47— { R
+ %’YbDb‘Pa + %S’YabDb‘P +O(?),
where we defined
o = E()* + iFaijk%'j% + 4_18Fz‘jkl’7aijklm7/)ma
D = 7,0°. (2.17)

Note that all indices are local Lorentz ones and we neglect the torsion parts. The Ricci
tensor, the scalar curvature, the vector ®* and the scalar ® are proportional to the field
equations E(e)?, or E(¢)* when the four-form field strengths are neglected. Thus up to
the field equations, we obtain the following relations.

1
Y Dethab ~ 77 e Raved,

1
D%y ~ Z’ydebRabcd. (2.18)
The parts which depend only on the field equation of the Majorana gravitino are given by
1
Y Derbap ~ <_77d[a77b}c + §nd[a%wc> DE(v)",
b 1 1 b c
D wab ~ 5 NacYb + §’7ab76 D E(¢) . (219)

These relations will often be used to evaluate variations of the higher derivative corrections.



3. Higher derivative corrections: an overview

Since the higher derivative corrections to the supergravity are too complicated, before
discussing details, let us have an overview of the construction of the higher derivative
effective action. The explicit forms of the ansatz for the action and the variations under
the local supersymmetry will be explained in the next section.

Let us consider the ansatz for the higher derivative corrections to the supergravity.
Since there are so many ways to contract indices, in general we have enormous terms in
the action. Of course such situation is not suitable to apply the Noether method, and we
should make the ansatz for the action as simple as possible.

First of all we restrict ourselves to investigate leading order corrections to the super-
gravity which start from the order of Eg.

L=Ly+ €2£1 (3.1)

Here £, is the unit length in eleven dimensions, and the field contents are the vielbein, the
Majorana gravitino and the 3-form potential. The assumption that the leading corrections
start from the order of 616, is consistent with the duality between the M-theory and the
type ITA superstring theory. For the ITA superstring theory the leading corrections are
obtained from the scattering amplitude of closed strings, and contain quartic terms of the
Riemann tensor, £$R*. Here £, is the string length and related to the unit length of the 11
dimensions as ¢, = g;/%s.
Now let us consider the field redefinitions of

ety — ety =ety + EgAe“a,
w,u - ¢/,u = ¢u + 62A¢;u (3-2)
Auyp — Aluyp = A,Wp + KSAAMVP'

Then the Lagrangian changes like

L — L'=Ly+ eg{ﬁl + eAet E(e)® ), + eAp, E()* + eAA,,,E(A)*P} + O(e}f),
(3.3)

where E(e)?,,, E(1)" and E(A)"? are the field equations for e/, ¥, and A,,,,, respectively.
This means that the higher derivative terms which depend on the field equations of the
supergravity can be removed by the appropriate field redefinitions [@] Thus in order to
make the ansatz as simple as possible, we only consider the higher derivative terms which
are independent of the field equations.

The supersymmetric transformation rules for the fields should also be modified from
the order of the fg.

detq = doet'q + L351€M g,
5% = 507;Z),u + ffﬁﬂ/)u, (3.4)
0Auwp = 00 Auwp + ggélAWp-



Then the variation of the Lagrangian (B.1)) under the supersymmetric transformations (B.4)
is expressed as

5L = 80Lo + fg‘{aocl +edyet o E(e)®, + edy, E(h)" + eélAWpE(A)“”p} +0(2)
= 0oL + (5{V + (X% + D160 ) B(e)" + e(X, + 0110, E(6)" (3.5)
+ e(XWp + 51Awp)E(A)Wp} + 0(611;2%

where V is the variations of the higher derivative terms which are independent of the field
equations,

V =080l — eX" E(e)*) — eX, E(W)* — eX,,E(A)P. (3.6)

The cancellation of the leading term, i.e., the supergravity part is just checked in the pre-
vious section. Note that, though the higher derivative terms in the ansatz are independent
of the field equations, generally their variations under the local supersymmetry depend on
them. So the variations in §p£; can be decomposed into the terms V' which are independent
of the field equations and the other terms which depend on them.

The order of the Eg part in the second line should vanish under the requirement of the
local supersymmetry. Thus we have the following conditions:

V=0, (3.7)

(51€Ma = _Xa;u 51¢u = _X;u 51Auup = _X;u/p-

The first line is used to determine the coefficients of the higher derivative terms in £;. The
second line gives the modifications of supersymmetric transformation rules.

4. Higher derivative corrections: details

4.1 The ansatz for the higher derivative terms

In this paper we take up the cancellation of variations via the local supersymmetry which
are linearly dependent on the Majorana gravitino and independent of the 3-from potential.
This means that the ansatz for the higher derivative effective action is made out of the
terms which are linearly dependent on the 3-form potential or the bilinear of the Majorana
gravitino at most. (In the case of the supergravity, this corresponds to consider the variation
of [eRéy] and the ansatz of L[eR] and 5[6@1#(2)].)

Since the building blocks for the ansatz are R%,,, = [L]72, Fj,0 = [L]7, D, = [L]7}
and 1/?“7/)1"")"1/11, = [L]7! and the integrand of the higher derivative effective action should
have the length dimension of [L]~®, the possible forms of the ansatz are given by

LleRY, LleenARY), L[eD*R?], L[eD*R?, L[eD°R],
LeDR Py,  LeD’R*y),  L[eD Ry,  LleD gyl (4.1)

where the covariant derivatives for the local Lorentz indices act on the Riemann tensor
or the Majorana gravitino. Note that the linear terms of the four-form field strength are

,10,



dropped by imposing the parity invariance. The Chern-Simons like terms are included,
however.

The ansatz (1)) is quite general but contains so many terms. In order to apply the
Noether method it is necessary to reduce the number of terms in practice. One way is to
classify the variations of the ansatz under the number of the covariant derivatives. Let
us restrict the ansatz to those whose variations contain one covariant derivative explicitly
at most. First the transformation rules for the vielbein, the three-form potential and the
Riemann tensor are given by dge ~ [€)], doA ~ [€] and doR ~ [Re)] © [D(€(9))], so in
the first line of the ansatz ([L.]),

LleRY], LleeyARY, (4.2)

are the parts whose variations have one covariant derivative at most. Next the transfor-
mation rules for the Majorana gravitino and its field strength are estimated as dpt) ~ [De]

and 612y ~ [Re], so in the second line of the ansatz ([L1), the forms of

LeR* Y],  LeR*P@) D)),  (L[eRDRi@)@)), (4.3)

contain one covariant derivative at most after the supersymmetric variations. Of course,
there is no guarantee that the supersymmetric transformations cancel completely among
(D) and [{3). As we will see later, however, it is enough to take account of this ansatz
to close the supersymmetry cancellation whose variations are linearly dependent on the
Majorana gravitino and independent of the 3-from potential.

In this paper we neglect the third part in the ansatz (JLJ). There is no reason to
drop this part at this stage, but the result is that this part does not contribute to cancel
the variations of the ansatz (.J). Therefore we only consider the first two parts in the
ansatz (). Note that this ansatz is also employed in the ref. [If] where the ansatz is
obtained by estimating the scattering amplitude of four or five massless closed strings.

4.1.1 L[eR*] terms

The L[eR*] part represents the quartic terms of the Riemann tensor. Note that the terms
which include Ricci tensor and the scalar curvature are removed by using the field redefini-
tion (B.d), so the L[eR?] part consists of only the Riemann tensors Rgp, (w). It seems that
there are many ways of contractions, but by using the antisymmetry Rupeq = —Rpacd =
—Rapde, the symmetry Rapeq = Redqp and the cyclicity Rgpeq = 0, the L[eR*] part can
eventually be expanded by 7 terms. (See an eq. (f£f) below.)

The above argument is only for purely bosonic case. Now we replace the spin connec-
tion w to the supercovariant spin connection w. That is, the Riemann tensor is defined by

using this supercovariant spin connection w(e, ) as
R™ (@) = 8,,% — 0,0, ™ + &% — &%, . (4.4)

Thus the L[eR*] part includes the bilinear terms of the Majorana gravitino through the spin
connection w. This operation is often used to check the cancellation of the supersymmetric
variations of the higher derivative corrections [L1|]. The variation of the supercovariant

— 11 —



spin connection does not include the derivative of the supersymmetric parameter, and the
cancellation mechanism becomes similar to that of the supergravity coupled to non-abelian

gauge field [[1], [, 5.

The Ryped only hold the antisymmetry property, and the terms in £[eR*] are expanded
by more than seven terms. Since there are so many ways to contract the indices, we employ
the computer programming. As a result, the terms in £[eR?*] are expanded by 13 terms

whose variations are completely independent.

LeRY = +bleRupeaRapeaRefon Re pgn + b3e RapeaRag th RbecaRe fon
+ bieRapeaRavan Be fche fgh T+ bzlleRabcdRaengbc the fah
+ bieRapcaRagan Roce s Reggn + b RabeaRands Roecg Refh
+ bre Rabes Radgh Rodee Re fgn + bye Raben Rade f Rbdeg Refgn (4.5)
+ byeRapen Racdg Rdes Bepgn + blo€ Rapen Racdf Rocag Re foh
+ b1 eRapen Rabag Reedf Re pgn + blo€ Radgh Ra foe Raebe Refon
+ biseRapen Ragde Rodes Re o

When the torsion terms are neglected, because of the symmetry and the cyclicity of the
Riemann tensor, 13 terms of £[eR?*] are redundant and classified by purely bosonic 7 terms

as
LleRY pure = + €Raped Ravea Re fgn Re pgn % (b1) Ay
1
+ 6RabcclRabceRclfghRefgh X ( §b2 + b3> As
1
+ eRapea Rave f Reagh e fgn X < g - —b5 + b6> As
+ eRaped Raccg RufanRefgn % (—bg) Ag (4.6)
+ eRapee Rabdg RepanRefgn X <b7 +bg+ = b9> As
1
+ eRapee Ravdf Reagh Be fgh ¥ (Zb 10— - bb) Ay
+ 6RabceRadchbfdhRefgh X ( b ) A7

The notations Ay, ..., A7 on the right hand side are those used in ref. [1J].

4.1.2 L]ee;; ARY terms

Let us consider the ansatz of the L[ee;; AR?Y] part. Since the 3-form potential is odd under

the flip of the 11th coordinate, the ansatz should be accompanied with the antisymmet-

ric tensor as 6‘1‘{“2“3”4"'““14

pmpops- Lhe remaining 8 indices pug,...,p11 are completely
antisymmetric and should be contracted with the 4 Riemann tensors. The way of the

contraction is unique because of the cyclicity of the Riemann tensor, and is written as

,Ufl ‘H11
11 AﬂlﬂQﬂSR H4ﬂ5R H6ﬂ7R HBHQR HioM11 "
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The remaining work is to insert the indices a, b, ¢ and d into the 4 Riemann tensors
which are contracted by the flat metric. There are two possibilities.

1
‘C[BEHAR4] = _éb%BEﬁ HHA,ulﬂQ,usRabuwzaRabMGMRcdusuchdumuu (4-7)

1o

- 6b266ﬁ “11AMMMSRabm%RbCMGMRcdusungaumuu-
It is known that a linear combination of these terms are required to cancel the gravitational
anomaly on a M5-brane. So these two terms are topological and can be expressed by using
the forms as AAtr(R2)Atr(R?) and AAtr(R*). Notice that the torsion of the Riemann tensor
in L[ee;; ARY] are neglected since we consider the cancellation of the order of O(A%, ).

4.1.3 ﬁ[eR?’zﬁi/J(z)] terms

Here we write down the bilinear terms of the Majorana gravitino which are in the category
of E[eRgz&ﬁ(z)].

First of all let us classify the types of [¢1)(2)]. Since all indices are contracted, the total
number of the indices is even and the number of the indices for [11)(9)] is also even. Then
the number of the indices for the gamma matrix should be odd and the types of [1/)1/)(2)]
are classified as

[b@)] ~ Vnyrgh ® Viverg¥ni ® ¥jVdefgntij®
VoVefalhi D UnVdefgnij © ViYede fohitjk® (4.8)
Vivij © VkYimnli; © VkYimnoplij-

In the first line or the second line the index of the gravitino is contracted with one of the
indices of the gravitino field strength or the gamma matrix, and in the third line no indices
are contracted. There are several remarks at this stage. First because of the cyclicity of the
Riemann tensor, the number of the uncontracted indices of the gamma matrix should be
less than seven. Second, as argued before, the terms of ﬁﬁﬂﬁjk are neglected because these
are expressed by using field equations. Third the term of %%1#]% is dropped since there are
no cubic terms of the Riemann tensor whose uncontracted two indices are antisymmetric.

The types of [R?] are classified by the positions of the contracted indices. As an
example, let us consider a cubic term B . R 4R pcq Where b, ¢ and d are the contracted
indices and blanks are arbitrary. This term is classified by the positions of the contracted
indices as {1,2,3}{1,2}. The {1,2,3} shows that the number of the contracted indices in
each Riemann tensor. That is, the first Riemann tensor contains one contracted index, the
second does two and the third does three. The contracted index ¢ is contained in the first
and the third Riemann tensor, so the numbers (1,3) are assigned for this index. Similarly
for the indices b and d, the numbers (2,3) are assigned, and totally this example has the
numbers of (1,3)1(2,3)2. The {1,2} represents the numbers of the powers of (1,3)! and
(2,3)2. The numbers are aligned in order of rising. Thus the example R R j 4R ped
is classified by the numbers of {1,2,3}{1,2} which are not affected by the properties of
the Riemann tensor. The types of [R3] are classified in this way and the complete list is
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given in the appendix [J. The result there is checked both by hand and by the computer
programming independently.

The independent terms of E[eR?’?/_)z/)(g)] are obtained by inserting the uncontracted
indices of [1;1/1(2)] into the blanks of [R3]. It is useful to classify these terms by the
positions of the uncontracted indices of [1;1/1(2)] in the [R3]. For instance, the term
eRaupi RakedRyjecatkivi; is assigned new numbers of {10,11,100}. The meaning of these
numbers are as follows. For each index of the Majorana gravitino, the gamma matrix and
the gravitino field strength, the number 100, 1 and 10 is assigned respectively. The first
Riemann tensor of this example has the number 11, the second does 100 and the third does
10, and these numbers are aligned in order of rising. Thus the term eRalbz‘RakcdejcdlEk%%j
is classified by the numbers of {2,3,3}{1,1,2}{10,11, 100}, which are not affected by the
properties of the Riemann tensor, the gamma matrix and the gravitino field strength.

By using the numbers discussed above it is almost possible to classify the terms of
£[6R31/;1/J(2)], and the explicit expression is given by

LeR*)i)] =
+ (f1 Rafbg Racde Ruede + fa Rafoe Ragde Rocde + 13 R fad Regae Rocde)€ny fUgn
+ (f4 Rrtij RaveaRavea + f3 Ritai RyjeaRaved + f§ RiiarRyjeaRabed
+ fF Rijak RuicaRabed + fa RijarRokcaRabed + fo RitabRijeaRabed
+ floRkiavRijeaRabed + fii RitabRaicaBujea + flaRriab Racd Rbjed
+ fisRiiap RakeaRojea + fiaRijab RakeaRoted + fisRitac Rbiad Rbjed
+ fioRriacRoiaaRojea + fiz Riiac Rokad Rbjed + fisRijac Rbkad Rbicd
+ floRakei Rowdj Ravea + faoRakei RbtadRbjea + f21 Ratei Rokad Rbjed
+ faoRakvi RatcaRojed + fa3Raii RakeaRojea)ebx i
+ (faaRe fhi RapeaRabed + [25Re fah Rbicd Rabed + fa6 Rhiae Rofea Rabed
+ fyrRe fabRhicaRabed + fasRenavRficaRabed + 29 Re fabRahcaRbicd
+ faoRenab RafeaRuicd + f31 RhiabRaccaRofed + faaRefacRohad Rbicd
+ fi3RenacRofadRvica + f34RhiacRbcadRbfed + f35Racch Rofdi Rabed
+ f3sRacch R faaRbica + f37Racoh R faca Rived) €Wy Ve fgni (4.9)
+ (f3sRe fah RogeaRabed + fagRefabRohedRabed + FioRefabRageaRoned
+ i1 Rehab RafeaRogea + fio Re fac Rogad Roned + fisRehac R fad Roged)eViYe fgUni
+ (fiaRritmRanveRajve + FisRimijRakbeRanbe + FigRimak Rijbe Ranbe
+ firRimak Ruive Rajoe + FigRimai RinbeRaje + FioRimai BnjcRakbe
+ fa0Rimai BijveRanbe + f31 Ritai Rmnbe Rajve + fao Ritai RmjbeRanbe
+ fasRiiak Rmnbe Rajoe + fasRiiak Rmjve Ranve + fas Rijal Rimbe Ranbe
+ fasRijat RmnbeRakbve + 37 Rijak Rimbe Ranve + fag Rimbk Ranci Rajbe
+ fa9Rimbi Raken Rajve + fo Rimbi Ranci Rakbe + fé1 Rimbi Rakej Ranbe
+ féoRitvi RajemRanbe + fas Riivk Rajem Ranbe + faaRijoi Rakem Ranbe
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+ fas Ritab Rmnac Rijbe + Fo RkiabRimac Bnjoe + for Rimab Rijac Rbken

+ fosRiiabRnjac Roken + féo Rimab RniacRoke; + f1oRimab RiiacRoncj

+ 1 Ritab Rmiac Ronej + f1a RimabRekai Roncj + fr3Riiab Rekam Rone;

+ fraRarvi Remai Rone; ) €0k Yimn Vi

+ (f75Raeai Ry gbe Ranbe + FlRdeab R gac Ronei) € jVae fon i

+ (f#7Rdeai Rygbc Rajbe + frsRijadRe foc Ragbe + foRaeai Rf jbe Raghe

+ faoRaevi Rafej Raghe + f31 Raeab R fiac Rogei ) €nVae fon i

+ (3o Rimki Rnoab Rpjab + f33Rktij Rinnab Ropab + 34 Rimij RknabRopab

+ f35 Rimai Rnobj Ripab + fag Rimak Rijon Ropab + fa7 Riiak Bimnbj Ropab

+ fas Riai Rinnbj Ropab + Fao Rimak Rnobi Rpjab + foo Rimak Rnobi Rapbj )€k Yimnopij

+ (fo1 Redjr Re pabRghab + for Redaj Re ok Rghab) €ViYede fghijik-

Thus there are 92 terms for £[€R31/;¢(2)]. This result is obtained both by hand and by
the computer programming independently. Note that this expression is also obtained in

ref. [13].

4.1.4 £[€R2IE(2)D¢(2)] terms

We write down the bilinear terms of the Majorana gravitino which are in the category of
L[eR?)2) Dijy)).

First of all let us classify the types of [Q,Z)(Q)Di/)(g)]. Since all indices are contracted, the
total number of the indices is even and the number of the indices for [¢(2)D¢(2)] is also
even. Then the number of the indices for the gamma matrix should be odd and the types

of [@(Q)sz(z)] are classified as

[i(z)Dw(Z)] ~ T/_Jmnr)/jDi¢mn ® &manjleﬂbmn
T,Z_)mn’VjDi¢on ©® &mpr)/jlei¢op (4-10)
&mn’YjDiwop @ szmn’)/jleiwop-

In the first line four indices of the gravitino field strengths are contracted. In the second
line two indices of the gravitino field strengths are contracted, and in the third line no
indices are contracted. There are several remarks at this stage. First the indices of the
gamma matrix are all uncontracted with the indices of the gravitino field strength and
the covariant derivative. As discussed before, the terms whose indices of the gamma ma-
trix are contracted can be expressed by using field equations and neglected in the ansatz.
Second because of the cyclicity and the Bianchi identity of the Riemann tensor, the num-
ber of the indices for the gamma matrix should be less than five. Third it is always
possible to make the index of the covariant derivative uncontracted with the indices of
the gravitino field strength by using the relation of D .¢gy ~ %Rde[ab7d6¢c]- For exam-
ple, &ikijﬂ/)kl = —%@HﬂjDﬂﬁik + %Rde[ikiz)ikwjvdeiﬁ”, where the second term is already
included in the category of £[€R31/;¢(2)].
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The types of [R?] are classified by the positions of the contracted indices. As an
example, let us consider a quadratic term R p.qR pcq where b, ¢ and d are the contracted
indices and blanks are arbitrary. This term is classified by the positions of the contracted
indices as {3,3}{3}. The {3,3} shows that the number of the contracted indices in each
Riemann tensor. That is, the first and the second Riemann tensor contains three contracted
indices, respectively. The contracted index b is contained in the first and the second
Riemann tensor, so the numbers (1,2) are assigned for this index. Similarly for the indices
¢ and d, the numbers (1,2) are assigned, and totally this example has the numbers of
(1,2)%. The {3} represents the number of the power of (1,2)%. The numbers are aligned in
order of rising. Thus the example R peqR peq is classified by the numbers of {3,3}{3} which
are not affected by the properties of the Riemann tensor. The types of [R?] are classified
in this way and the complete list is given in the appendix [J. The result there is checked
both by hand and by the computer programming independently.

The independent terms of £[€R21;(2)D¢(2)] are obtained by inserting the uncontracted
indices of [1/;(2)D1/J(2)] into the blanks of [R?]. It is useful to classify these terms by the
positions of the uncontracted indices of [@(Q)Dw(g)] in the [R?]. For instance, the term
eRiaob Rmajv¥mnVjDitbon is assigned new numbers of {20,101}. The meaning of these
numbers are as follows. For each index of the first gravitino field strength and the gamma
matrix, the number 100 and 1 is assigned respectively. And for each index of the covariant
derivative and the second gravitino field strength, the number 10 is assigned. Note that
the same number is assigned both for the covariant derivative and the second gravitino
field strength because of the relation D144 ~ iRde[ab7d6¢c]- The first Riemann tensor of
this example has the number 20 and the second does 101, and these numbers are aligned
in order of rising. Thus the term eRiaomeajb'lZ}mn'YjDiwon is classified by the numbers of
{2,2}{2}{20,101}, which are not affected by the properties of the Riemann tensor, the
gamma matrix and the gravitino field strength.

By using the numbers discussed above it is almost possible to classify the terms of
£[€R21/;(2)D¢(2)], and the explicit expression is given by

L[eR*2) Do) =

+ (ff RijmaRopna + 3 Rijoa Rinnpa + f3 RimjaRopna + 1 RiojaRmnpa
+ f2 RimoaRjnpa + [3 Rimoa Ripna + f2 Riopa Rjmna)€WPmnY; Ditbop
+ (3 Riajb Rimaob + 13 Riajb Roamb + FioRiambRjaoh + fi1 Riaob Rjamb
+ fioRiambRoajo + Fi3Riaoh Rmajb)€Pmnj Diton
+ fT4Riabe Rjabe €UmnYj Dithmn (4.11)
+ (fE5 Rijiem Rinop + FigRijkoRipmn + iz RimjoRiinp + fisRiojp Ritmn)€lmn Yk Ditbop
+ (flyRijkaRimoa + 30 RijkaRioma + fa1 RijmaRiioa + fooRijoa Riima
+ 33 RimjaRitoa + fa1RiojaRiima)eUmpYjkiDitbop
+ f35 Riajo Rkatb €PmnYik1 Dithmn

Thus there are 25 terms for £[€R2TZJ(2)D1/J(2)]. This result is obtained both by hand and by

,16,



the computer programming independently.

4.2 The bases for the variations

Now let us turn our attention to the variations of the ansatz. In this subsection we write
down all independent terms of the variations, and in next subsection we will expand the
variations of the ansatz in terms of these bases.

Since we are interested in the cancellation of the terms which are linear to the Ma-
jorana gravitino and independent of the 3-form potential, the relevant supersymmetric
transformation rules of the fields are roughly expressed as

doe ~ [ey],
dolt ~ [Rey] ® [D(€2))],
doA ~ [e], (4.12)
Sy ~ [De],
S0t (2) ~ [Rel.
Then the variations of the ansatz 6L[eR*], &L[ee;1 ARY, 6E[€R31Z¢(2)] and

5£[6R21Z(2)D¢(2)], which are linear to the Majorana gravitino and independent of the
3-form potential, are sketched as follows:

SL[eRY ~ VIeR'&)|dV [eR*DRéyy)],

6L [eer] AR ~ V[eR*&)],

SL[eR*Pip)]  ~ V[eR'&]oV[eR*DRe5)|®V [eR*EDY )], (4.13)
SL[eR*Y2) Dipa)] ~ V[eR*DRé5)|®V [eR*EDY )],

0 ~ VI]eR'eyp]® V[eR*eDi)).

As we will see soon, there are 116 bases for V]eR*e1)], 88 bases for V[eRQDRE¢(2)] and
92 bases for V[eRgEDQ/J(Q)]. For the last, 60 bases are essentially required and the other
32 terms are rewritten by the other bases with the aid of the field equations. Note that
the first terms V[eR*€)] and the third terms V[eR?’EDw(z)] are not independent because
of the identity, D t.q ~ %’yabw[eRcd}ab. In fact, by using the computer program we find
that there are 20 identities between the first terms and the third terms,

20
0=> in(V[R'&)] + V[R*eD)])n, (4.14)

1=n
where i, are arbitrary coefficients. The last line of the eq. (f.IJ) represents these identities.
Therefore under the local supersymmetric transformations, the variations of the ansatz
are expanded by 264 bases. Now we write down these 264 terms which are obtained both
by hand and by the computer programming independently.

4.2.1 Bases for V[eR*e))

There are 116 bases for V[eR*€)]. Before giving the explicit expressions we clarify the
algorithm to obtain the result.
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First of all let us classify the types of [é)]. Since all indices are contracted, the total
number of the indices is even and the number of the indices for [€7)] is also even. Then
the number of the indices for the gamma matrix should be odd and the types of [€y)] are
classified as

[EQ)[)] ~ g,}/zwz ® EWU'WZ @ E’}/ijklz¢z & E,)/ijIclrrmopz¢z69
g,yiwz ® E’yijsz ® €’yijklm1/}'z ® E,Yijklmnowz. (415)

In the first line the index of the gravitino is contracted with that of the gamma matrix,
and in the second line no indices are contracted. There are two remarks at this stage. First
because of the cyclicity of the Riemann tensor, the number of the uncontracted indices
for the gamma matrix should be less than nine. Second the term [ey%/ klmmwz] is dropped
because there are no quartic terms of the Riemann tensor whose uncontracted indices
are completely antisymmetric. (This is not obvious but can be checked by referring the
appendix [J.)

The types of [R?*] are classified by the positions of the contracted indices. As an
example, let us consider a quartic term R . fR cof R pcaRapca Where a, b, ¢, d, e and f
are contracted by the flat metric and blanks are arbitrary. This term is classified by the
positions of the contracted indices as {2,3,3,4}{1,2,3}. The {2,3,3,4} shows that the
number of the contracted indices in each Riemann tensor. That is, the first Riemann
tensor contains two contracted indices, the second does three, the third does three and
the fourth does four. The contracted index a is contained in the second and the fourth
Riemann tensor, so the numbers (2,4) are assigned for this index. In a similar way the
numbers (3,4), (3,4), (3,4), (1,2) and (1,2) are assigned for the indices b, ¢, d, e and f,
respectively, and totally this example has the numbers of (2,4)!(1,2)%(3,4)3. The {1,2,3}
represents the numbers of the powers of (2,4)!, (1,2)? and (3,4)3. The numbers are aligned
in order of rising. Thus the example R . R 4R peaRabed is classified by the numbers of
{2,3,3,4}{1,2,3} which are not affected by the properties of the Riemann tensor. The
types of [R*] are classified in this way and the complete list is given in the appendix [J.
The result there is checked both by hand and by the computer programming independently.

The independent terms of V[e R*€y] are obtained by inserting the uncontracted indices
of [€y)] into the blanks of [R*]. It is useful to classify these terms by the positions of the un-
contracted indices of [€)] in the [R*]. For instance, the term eR;jefRiae fszcdRabch’yij kqy?
is assigned new numbers of {0, 1,2,10}. The meaning of these numbers are as follows. For
each index of the gamma matrix the number 1 is assigned, and for each index of the Majo-
rana gravitino the number 10 is assigned. The first Riemann tensor of this example has the
number 2, the second does 1, the third does 10 and the fourth does 0, and these numbers
are aligned in order of rising. Thus the term eR;jcfRiqe fszcdRabchyij k) is classified by
the numbers of {2,3,3,4}{1,2,3}{0,1,2,10}, which are not affected by the properties of
the Riemann tensor and the gamma matrix.

By using the numbers discussed above it is almost possible to classify the terms of
V[eR*&)], and the explicit expressions for the bases are given by

Vll = eRabcdRabcdRefghRefghEryzTzz)za VY21 = eRabcdRabceRdfghRefgh€7Z¢za
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V3 = eRapcaRabes RedghRe fgn€y" s,
Vi = eRapee Ravag RepanRefgney™ )z,
V' = eRupee Radeg Rofan Re fgh€y* s,
Vi = eRiesf Reafo Raged Rbgea®y ",
Vio = eRicz Reagh RycgiRachay' 17,
Viy = eRiafgRobeaRea g Rebed€y' 1",
Viy = eRicaf Rochf RageaRugea€y 1V,
Vi = eRifegRoaeb R fegd Racbd€Y' 1",
Vis = eReagoRidpe Rea b Recga€y 1V,
Vio = eRopgaRidpe Rea b Recga€y V",
Vs = eRinef Rogen RygeaRabedey 1V,
Vas = €Riges Regeb RycgaRachay' 17,
Vo = €Riqpp RjgeaReafgRebeaey” v,
Vis = eRijze Riae Rafed R fea®y 17,
Vo = €Rijze Riay RecraRacha€y *1*,
Vi = eRijes Rokab Re feaRapeaey* 17,
Vi = eRijeaRecivRafeaRoeaey 17,
Viy = €RijeaR: pip RecraRacha@y” *1*,
Vis = eRije Riaef Rebea Rabea?y "7,
Vis = €Rijes Reaev RicraRacva€y” *1*,
Vio = eRijap Roce Riea Rapeaty 7,
Vi = €RijeaRipre R peaRavea®y 1%,
Vi = eRijeaRiens RecfaRachaey* 17,
Vi = €RijeaRifhe RocraRacha€y' 1%,
Vis = eRijeaRies R feaRapeaeyF 17,
Vit = €RiczfRjcaf RipeaRavea€y' 1%,
Viy = eR.eif Rjaeb RiefaRacba®y 17,
Vily = €Reaiv Rjces Rieds Racva@y %,
Vis = eRiczaR; foe R feaRapeaey * 17,
Viy = eRiczaRjebs RiefaRacvaey "7,
Vi = €RiczaRj poe RicraRacha€y” *1*,
Viy = eRiczaRjebs Ri feaRabeaty "7,
Vi = eRaaep Riafo RjccaRi featy 1%,
Vis = eRaaep Riafo Rjcea Rieaey ™7,
Vs = eReecRieaRiapa Rippeey 7 97,

Vi = eRupeaRaccg Rofan Re fgh€y s,
‘/61 = eRabceRabdfRcdghRefghE’)’zwz7

Vg = eRicsf Regab R s gea Rabea®y V7,
Vi = eRicgRec g Rabed Rabeaty V7,
Vi = eRiget Rabe f Raged Rbgeay' V°,
Vi5 = eRicgRecabRygedRabeaty 17,
Vit = eRiagv Rudfe Rea o Recga€y' 1,
Vig = eReagvRictaRea b Recgay' V7,
Vo = eRigef RavegRygedRabeaty' 17,
Vi = €Rige Rabeg R fegaRacay' v,

Vi = €Rijze Ry fab Re fea Rabea€y?* 7,
Vay = €Ryjes Rokes RabeaRavea®y'* 1%,
V3i = eRijeaRiesbRafed Ry fea®y 7,
Vi = eRijea R pib Re fea Rapea®y "7,
Vis = €Ryjes Reaes RipeaRavea®y? ¥ 1%,
Vi = eRijef Racab Ri feaRabea®y "7,
Vi = €Ryjap Rece s Ridef Ravea®y? * 1%,
Vi = eRijeaRe poe Ric feaRapeaey " 17,
Vis = €RijeaReehf RicraRacha€y**,
Vis = eRijea R foe R faRacba®y 97,
Vi = €RijeaReebs RispeaRavea®y 1%,
Vi = €Roeif Rjcas RiveaRabea€y?* 7,
Vi = €RiczyRjcav RisfeaRavca®y*1*,
Vi = eReainRjcef Risdes Racha€y? 1%,
Vis = eRuciaRj e Ric fedRabeay " F1p7,
Vit = eReciaRjens Risepalacha€y 1%,
Vsy = eReciaRj foe RicpaRachaey ™),
Vi = eReciaRjens RispeaRavea®y**,
Vs = eRacapRipab RjccaRi feay "7,
Vs = eRiaet Rjasy Rocca Ry feaey %,
Vi = €Raaec Rivea Rjafo Rie fay ' 17,
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V69 = eRijef Rplef Rabed Rabed€Y JklZT/J V710 = GRZ']'ekalabRefcdRabch’yijklz¢z,

V2 = eRijeaRiieb Rafed R feaey " 1., Viy = €RijeaRia o Re feaRapeaty *4p.,
Vi = eRijeaRiipo RecaRacha€y 1), V24 = eRijes Riaes Rivea Rabea€y 7 *#1),,
Vi = eRijef Reap RifeaRaveaey” 1), Vig = eRijesRiaeb RicsaRacba®y " 1),
Vi = eRijap Rice f Ridef Rabeaty ¥ 1), Vo = eRijab Riecs Rica Rabeaey 1.,
Vi = eBijealikens Fiegalacwa® ™, Vio = eRijeaRioe RicsaRacba®y " 1),
Vi = eRijeaRuey RifedRabeaey -, Vi = RijeaRifoe RifeaRabeaeyF 1),
‘/813 - eRieaijfabRkeCdedegryijklzwza V814 = eRiaebRjabekecdefch’Vijklzlbz,
Vs = eRiae Rja o RiceaRicraey -,

Vi = €Rijzc RiteaRombea Ry "0, Vi = eRijze Ritab Rmecd Rapea€y ™Mb,
Vis = €RijzaRiiev Rmeca Rabea€y? ™17, Viy = eRijzaRuieh Rmced Rachaey ™Mb,
VE)IO B eRzemR]kelemCdRadeewl]klm¢z V;)ll = eRzezaRJkelemcdRabch’YUkln%bz
V2 = €ja RiterFimezd acsd®y ™" 0", Vs = eRijze Riaeh Riaca Rmpea®y M™%,
Vo = €Rijze Raet Ricad Rincba®y? ™17, Vi = € Roaiy Ried Riaed Rmcedy ™*m)7
Vot = €Riazb RikcaRiaeb Rmcea®y ™7, Vi = eReciaRjrev Ricad Rmeva€y M7,
Vs = €RiczaRjkeb Ricad Rimebaey? ™%, Voo = €RzciaRjkeb Riaca Rmbea€y ™7,
Vioo = eRiczaRjkeb Riacd Rmpeaey ™ ™%, Vitr = eRuaicRjkbaRiaeh Rmeea€y ¥ ™7,
Vit = eRiaje Rapkd Riaeh Rmceaey ' map? Vibs = eRaaiaRikbeRiaeh Rmeea€y?*map?,
Vll()4 = eszdR]kbchaemecedewwklm¢z Vll()5 = eRijeaRkleaRmbcdszcdgryijklmqbz,
V1106 = eRijabRklcdRmeaszcedEVUklmwz7 V1107 = eRijeaRklemecadchbdgfyijklmwz
Vig = €Rijea Rites Rinaca Revcady” ™ ™17, Vit = €Rijac Riibd Rinach Recea€y *m?,
Viho = €Rijad Ritbe Rmach Receaty?™ ™%,

Vllll = eRijZaRklacRmnbdRobcdglyijklmnoqbza V1112 = eRijZchlamenadRobcdg’yijklmnowza
Viig = eRijab Ritab Rinned Rozeaey?Fmm? Viha = €Ryjab Ritac Runbd Roczaey Fmmon?

1 —_ijklmnopz 1 —_ijklmnopz
V115 - eRijabRklamencdRopcd67 J P wm V116 = eRijabRklacRmnbdRopcd67 J P wz

Thus there are 116 bases for V[eR*&p]. This result is obtained both by hand and by the
computer programming independently.

4.2.2 Bases for V[eR?DRey o))

There are 88 bases for V[eRQDRéw(Q)]. Before giving the explicit expressions we clarify
the algorithm to obtain the result.

First of all let us classify the types of [E?/)(Q)]. Since all indices are contracted, the total
number of the indices is even and the number of the indices for [€3)(3)] is odd. Then the
number of the indices for the gamma matrix should be odd and the types of [Ew(z)] are
classified as

[E2)] ~ e @ eyt @ eyFimnoyi, (4.17)
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There are two remarks on this classification. First of all since the ansatz does not contain
the terms which depend on the field equations, as a result the variations of V[eRQDREQ/J(Q)]
do not contain the terms which depend on the field equations as well. So we only take into
account of the indices which are all uncontracted. Second because of the cyclicity and the
Bianchi identity of the Riemann tensor, the number of the uncontracted indices for the
gamma matrix should be less than seven.

The types of [R2DR)] are classified by the positions of the contracted indices. As an
example, let us consider a quartic term R . 4R pq¢DpER  , where b, ¢ and d are contracted
by the flat metric and blanks are arbitrary. This term is classified by the positions of
the contracted indices as {2,3,1}{1,2}. The numbers of 2 and 3 in {2,3,1} represent the
numbers of the contracted indices in the first and the second Riemann tensor, respectively.
The last number 1 in {2,3,1} represents the number of the contracted indices in the
covariant derivative and the third Riemann tensor, because the indices of the covariant
derivative and the third Riemann tensor can be exchanged by using the Bianchi identity
of the Riemann tensor. Thus the index of the covariant derivative is grouped into the
position of the third Riemann tensor. The contracted index b is contained in the second
Riemann tensor and the third position, so the numbers (2,3) are assigned for this index.
In a similar way the numbers (1,2) are assigned both for the indices ¢ and d, and totally
this example has the numbers of (2,3)(1,2)2. The {1,2} represents the numbers of the
powers of (2,3)! and (1,2)2, where the numbers are aligned in order of rising. Thus the
example, R . 4R waDpyR , is classified by the numbers of {2,3,1}{1,2} which are not
affected by the properties of the Riemann tensor. The types of [R2DR] are classified in
this way and the complete list is given in the appendix [J. The result there is checked both
by hand and by the computer programming independently.

The independent terms of V[eRZDREQ/J(Q)] are obtained by inserting the uncontracted
indices of [€t(y)] into the blanks of [R2DR]. Careful analysis shows that it is always
possible to make the index of the covariant derivative filled by a contracted index by using
the Bianchi identity of the Riemann tensor. Therefore below we only consider the terms
of [R?DR] in which the index of the covariant derivative is already filled.

It is useful to classify the terms of V[eRQDRéw(Q)] by the positions of the uncontracted
indices of [€)(9)] in the [R2DR]. For instance, the term eRijkaRebcdDeRabchyki/)ij is as-
signed new numbers of {0,0,21}. The meaning of these numbers are as follows. For each
index of the gamma matrix the number 1 is assigned, and for each index of the gravitino
field strength the number 10 is assigned. The first Riemann tensor of this example has the
number 21, the second does 0 and the third position does 0, and these numbers are aligned
in order of rising. Thus the term eRijkaRebcdDeRabch’yij is classified by the numbers
of {1,4,5}{1,4}{0,0,21}, which are not affected by the properties of the Riemann tensor
and the gamma matrix.

By using the numbers discussed above it is almost possible to classify the terms of
V[eRzDREQ/J(z)], and the explicit expressions for the bases are given by

9 ki 9 ki
V1 = eRijkaRebcdDeRabchV WJ, Vé = eRijeaRkbcdDeRabch’Y WJ,

2 — k ) 2 _ Kk ..
Vg = eReaichbdeeRabch'Y P, Vi = eReaiCRkbdieRabch'Y P,
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ki
= eReaiijcadDechde'Y T;Z)Z]a
ki
- eReaibchadDechbd€7 WJ,
— ki
= eReaibdeacDechde'Y T;Z)Z]a

ki
eReakbRidacDechbd€7 WJ,

= eRijap Redac De Ricbaey* v,
- eRkaibRecadDechdekaij7
- eRkaibRedacDechdekaij7
= eReaicRabcdDeRkbjd?kaija
- eRecadRicbdDeRkajbEkaij7
= eRecadRicbaDe Rijabey ",

_ ko4
eRebcdRabcdDeRijka€7 W],

= eRijti Raabe DaRomavc ey ™,
= eRyjkaRipdcDaRmpacey* ™",
= eRyjac Riadb DaRimpeey* ™",
= eRijkaRaabe DaRimpeey™ ™9,

T
eRiaki RjcabDaRmpac€y™ ™",

= eRickaRjbda DaRimpeey™ ™,
= eRickaRjady DaRimpcey ™™,
= eRiaraRjeinDaRmpacey™ ™,
= eRjai Rapme DaR jbacey* ™",
= eRiaklRdbachchmbgfyklmwij7
= eRipda Ritac DaRjerpey ™",
= eRiadp Ritac DaRjerpey* ™",
= eRibacRkldaDdecmbgfyklmwij7
= eRipke Rimda DaR jbacey* ™",
= eRickt Rapac DaRjarmey™ ™,
= eRjdkaRivac DaRjomcey* ™",
= eRicImRdaldechmbgfyklmwij7
= eRicka Raatv DaRjpmcey* ™",

Y .
eRickaRladdechmbG'Y ml/iw7

T
= eRickaRiaabDaRjbmceY™ " ",

T
eRicab Rivac DaRjaim€y"™ """,

_ klm., i
= eRipacRivac DaRjaimey™ """,
T
= eRipdcRivacDaRijma€y" " ",

T
eRpadbRimacDaRijpcey™ """,
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ki
= eReaiijdacDechde'Y T;Z)Z]a

ki
eReakbRicadDechbd€7 WJ,

— ki
eRkaebRidacDechde'Y T;Z)Z]a

- eRijabRecadDechdekaij7
= eRiakb RecadDe Rjcbaty* 1",
- eRiakbRedacDechdekaij7
- eReaicRabcdDeijkdEkaij7
= eRecadRicha De Rjarpey 1",
= eRedacRicbdDeRkajbEkaij7
= eRedacRicbaDe Rijabey ",

i
= eR;jkaRapie DaRmpacey” " YY,

e Rijda RiipeDa Rimapeey™ b |
eRijacRiakb DaRimpcey™ ™,
e Riaki Rjvae DaRmbacey* ™,
e Riake Rivda DaRimpcey ™

= eRiakeRjady DaRimpeey™ ™,
= eRiaraRjbie DaRnpacey™ ™,
= eRiaraRjeinDaRimpacey™ ™,
= eRjai Rinbde DR jbacey* ™",

T
eRiaki RapacDaRjpmeey™ """,

T
= eRipda RitacDaRjpmceY™ ™",
T
= eRiaap RitacDaRjpmceY" " YY,
T
= eRickyRimda DaRjpacey™ """,

T
eRivkcRavac DaRjaim€Y" """,

T
eRiakdRipacDaRjpmeey™ """,

T
= eRiakcRaaivDaRjempeY" " VY,

T
eRiakeRaanDaRjpmeey™ """,

T
eRiakeRiaabDaRjempey™ ™",

T
= eRiakeRiaabDaRjpmceey™ ",

T
eRicap Ripac DaRjaim€y™ ™",
T
eRivac Ribac DaRjaim€y" """,
T
eRpcab Rivac DaRijma€y"™ """,

T
= eRipda RimacDaRijpcey" Y,

T
eRpipe Ravac DaRijma€y"™ " ",

(4.18)



2 — Kkl i j
Vi = eRpapeRaave DaRijimey™ ™",
V725 = eRzgkalecbD Rnoabffyklmnoww V726 = eRklz'achmecRnoabgfyklmnowija
2 kl 2 _ Kkl ij
V77 = eRklmRmcng Rnoabery mnowm V78 = eRkliaRmncchRjaobery mnowzj’
V729 = eRklzaRmncbD Roajbff)/klmnoww V820 = eRijkchmabD Rnoabgfyklmnowija
2 kl 2 kl ij
Vv81 = eRkica RmnabDe Rz;obﬂ mnowm ‘/82 = eRjckaRimabDe Rnoybery mnowm
‘/823 = eRciaRimabDe Rnoybefyklmnowm ‘/824 = eRiakp RimecaDe Rnogbefyklmnowm
2 kl 2 kl
‘/;35 = eRk(ulemcaD Rnoybery mnowm ‘/;36 = eRklzaRcame Rnoybery mnowm
2 kl kl
‘/87 = eRkliaRmacchRnojbefy mnowU, ‘/88 - eRckalemabD Rz]noefy mnowm

Thus there are 88 bases for V[eRZDREQ/J(Q)]. This result is obtained both by hand and by
the computer programming independently.

4.2.3 Bases for V[eR?’ED?,Z)(z)]

The bases for V[6R3€D¢(2)] are obtained as in the case of deriving the ansatz for
E[€R31;¢(2)]. That is, by replacing the Majorana gravitino in the E[eR?’?/_)z/)(Q)] with the
covariant derivative, we obtain 92 bases for the V[6R3ED¢(2)]. The explicit expressions for

the bases are given by

(Vi = eRafogRacde Rocde€Y s Dby, V3 = eRuyheRagde Rocde €Y Dnibgh,
VP = eRbfadchaeRbcdeg'YthT;Z)gh)2a

Vi = eRuiij RapeaRapeaty' Db, V2 = eRppai RojeaRapea€y' D,

Vg = eRpiar RyjeaRapeaty' DF™ V2 = eRijar Roica Rapea®y' DF ™,

V@ = eRyjai RokcaRaveaey DM, Ve = eRkiap RijeaRaveaey DM,

Vb = eRpiapRijeaRabeady' DP9, Vi = eRpab RaicaRyjeay' DP9,

Vi = eRpiap RatcaRyjeaey DF Y, Vi = eRiiah RakcaRbjeaey' DFpY,

Vi = eRijap RakcaRpicaey' DF ¢, Vit = eRpiac Rbiad Ryjeaey' DFy,

Vi% = eRbiac Rutad Rujeaty' D", Vi3 = eRyine Rokad Ryjeaey' DF¢,

Vi = eRijacRikad Rycaey' DM Vi = eRakei Rotgj Rapeady' D,

Vit = €Rakei Rotad Ryjeaey' D, V3 = eRaici Rpkad Ryjeaey' DM,

Vi = eRakpi RacaRyjeaey DF9Y, Vi = eRaupi RakcaRyjeaey' DFy, (4.19)
(V3 = eResniRabeaRabed€Ve g Dgnis Vit = eRefan RoicaRabea@e g DgWnis
Vit = eRhiae RbfeaRabedVe g Dgnis Vit = eReap RhicaRabea@e fg DgUni,
Vi = eRenav R ficaRabed@e fg Dgnis Vi = eRepap Rahed Rbica@e tg Dg¥ni,
Vi = eRenab Rafed Rbica€Ve g Dg¥nis Vil = eRpiap Raccd Rofed€Ve g Dgnis
Vih = eRepac Rohad Rbica@e fg Dgnis Vi = eRehacRb fad Rbica@e tg Dg¥ni,
Vi = eRhiacRoead RofeaeVe fg Dy Wnis Vit = eRgech Ropdi Rabea@e g Dg¥nis
Vit = eRaceh R fad RbicaVe g Dg¥nis Vit = eRaebh R pacd Ribed€e ngg%z‘)l,
(Vi = eRefanRogeaRabed€Ve fg Dithni, Vi = eRe fab RghcaRabed@e g Ditoni,
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(Vis =
(V737 -

= eRefapRaged Roned€Ve g Dithi,
= eRcfacRogad Rohed€Ve g Dithi,
= eRpitm RanbeRajveey ™™ DFp'
= eRimak Rijoe Ranpeey ™ DFp"
= eRimai RinpeRajveey ™™ D1y
= eRipmai Rijpe Ranpeey ™™ DFp

— 1 k,.ij
eRklaiijbcRanbcery "D T;Z)Z]a

1 k, i
= eRliakijbcRanbcefy DR

— 1 k,.ij
eRijalRmnbcRakbcery "D T;Z)Z]a

= elebk:RanciRajbcgfylmnDkwij7
= eRimpi Ranci Rarpeey ™™ D'
- eRklbiRajcmRanbcgfylmnDkwij7
= eRijblRakcmRanbcgrylmnDkwij
= eszalemacRn]bcerylmnDka
= eRliamejacRbkcnefylmnDkwu
= eleabszacRbnc] er}/lmnDka
- eleabRckainncj e,ylmnDka]

eRakp Remai Rbncy EermnDka
eRaeai R fgbe Ranbe€Vde fgn Djbij,
eRdeai ngbcRajbcgf)/defghthij ;

= eRdeai RfjbcRagbcgf)/defghthij ;

eRdeabeiacRbgcj E’VdefghDhﬂbij) 17

= eleki RnoabR jabg,ylmnopDkwij
= elez] RknabRopaberylmnopDka
= eleakRl]bnRopabefylmnOpDk¢Z]
= eRkl(uRmnb] RopaberylmnopDka
eleakRnobi Rapb] e,ylmnopDkwlj

Vés
Ve
Ver
Ve

(Vi) = eRegjiRefab Rohab@Vedefgni Ditvjr,  Viy

= eRenavRafedRoged€Ve g Ditni,

= eRehacRofadRoged€Ve s Dithi) o
= eRymij Rakbe Ranpeey ™" DF
= eRymak Ruive Rajveey ™" D*pid

3 ki
eleaianbcRakbcey "D ¢Z],

- eRklai RmanRajbCEVImnDkwij7
= eRliakRmnbcRajbc€71mnDk¢ij,
- eRijal kabCRaanEVZmnDkwij7
= eRijaklebcRanbc€71mnDk¢ij,
= elebiRakcnRajbCEVImnDkwij7

! ki
elebiRakchanbcey "D ¢U,

- eRlikaajcmRaanEVImnDkwij7
= eRklamenaCRijbcg'YlmnDk¢ij s
= eRimab Rijac Rokeney ™ DF1p',
= eleabancRbkcj EVZmnDkwij7
= 6RklameiaLcRbncj g'ylmnDklbij s
= eRliabRckamRbncj EVZmnDkwij7

€Raeab R fgac Ronci€Vde foh Djtij)

= eRijadRefbcRagbcE’YdefghDhwij )
= eRdebiRafcj RagbcE’Ydefghthij )

1 k
17 Ltmnab{lopal mne ‘
e Ritii Ronmab Ropab @y ™™ DF1pd

l k
eleaanob] Rkpabey P D ¢Z]

l k
- eRllakRmnb]Ropab€7 P p 1/1”

! k
= eleakRnobszjabE'Y P D ¢Z]

eRedaj Re foi Rohab@ede fgni Ditjk ) 1

Note that these terms are classified into 3 types. The first one is Vi 37, Vir, g, and ‘/;)31,92

where the index of the covariant derivative is contracted with the index of the gamma

matrix.

By applying the first equation in (R.1§

), these terms are expanded by V} s,

Vs Vibgo and Vi 116. The second one is V33, Vi 453 and V%,?G where the index of

the covariant derivative is contracted with the index of the gravitino field strength. By

applying the second equation in (P.1§), these terms are expanded by V11~116- The third one
is V2 o3, Viury and Vi _gq, which are the 60 bases for the V[eR?*€Di)].
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4.2.4 The identities

As mentioned before the bases for V[eR*€y] and for V[eR?’ED?/)(Q)] are not independent
because of the identity, Ditcq ~ %yabz/)[eRcd]ab. By using the computer programming we
find 20 identities among these bases. The result is as follows.
I = 2V + 2V — AV + 2V + Vi — 8V — 4V =0,
Iy = Vi — 2Vgy — 4Vg + 8V = 0,
Iy = AVi7 + AVig — Vi — 4V + 2V — 2V — Vg + Vigg + 2V)) + 4V =0,
Iy = 8V + 8V — 8V — 8Vih 4+ 4Vih — 4V, + Vi + 2VL + 8V — 4V = 0,
Is = 2Vi7 — 2V + 2Va5 — 2V — Vg + Viig + 2Vi5 + 4V = 0,
Ig = 4V} — AV + AV3y — AV3y + Vi + 2V + 8Vih — 4Vi% = 0,
I; = 8Vy +2Vi} — 8Vi + 4V + 2V — 8Vap — 2V — Vigs + 8V +4Vi5 = 0,
Is = 2Vy +2Vig — Vis + 8Viz — 8Vig + Vor — Vg + 2V — 16Vsy + 4V + 4V
+ Vi — Vigs + 4Vi7 + 4V +4Vjy = 0,
Iy = 4Vy + 4V — 2V + 16V7; — 16Vig + 2V + 4V, — 4V — 4Va) — 8V
+ Vir — 2Vipg — 4V +8Vsp = 0,
L = 2Vy +2Vi — Vil + 8Vi§ — 8Vig — 4Vjjg + 4V + 2V3y + 8Vay + 4Va5 — 4V,
— 4V + 4V — 4Vgs + AV — 2Vgo — 8VE) — 8V5) +4V35 =0,
Iy = 2V +2Vis — Vi + 8Vi — 8Vig + Va5 — Vg + 2V + 4V55 + 2Vgs — Vg (4.20)
+ Vige — 4Vs1 — 4Vs} — 2V = 0,
Iy = AVy =2V +8Vip — 4Vyy + 8Vy — 8Viy + 8V — 8V — Vor + AVig
+4Vay — 4V + 8Vay + 8Viy — 4V — 8V — Vas + 2Vo — 2V + 2Vii7
— AV} — 8VE% + 8V5y — 8V = 0,
Iy = 2Vg — V' + 4Vj — 2V + 4Vig — 4Vig + 4Vig — 4V + 2Vjg — Vi
— AV — 2V + AViy — AVgy + Vg — 2Vi5 + 4V + 2V — 2Vigr + Vi
— 8Vgh — 8V — 4V = 0,
Iy =12V — AVjy + 4Vgs — 4V + 8V + 8V + Vo — Vg — 2Vigg — 4Vih — 8V = 0,
s = 2Vy + 8Viy + 8Voy — 2V — 4Vjs + 2Vl — 4V — 8V — Vg — 2V
— 4V + 4V + 8Vi) =0,
L = Vg — 3V + 4Vah + 4V — Vi — Vg + 4Vsg — 4V — 2V + 2V
— 2V — 2Vis — 2Vig — 2Vigs + 2Viy + 4Vl — 8V7 = 0,
Ly = Vg — 12Vi}) — 6V3 + 4Vah + 28V — 24V3y + 2Vik + 2Vik + 12V3%
+12Vay — 8V — 4Vgo — 2V — 4V + 16Vr + 4V + 6Vig + 4V,
- 2V1103 - 4V1104 - 8%?% - 8V731 - 24V7?Z =0,
Lig = 2V + AV — AVEE + 4Vih — 4VEh — 16V} + 16V5, — 16Vsy — 2V,
+ 8Vgy + 16V + 4Vipg + 4Vihy + Vi — 8Vgh + 4V, = 0,
g = 2Vig — Vo — 2V + 2V + 2V35 — 4Vg + 4V — 4V — 4Va5 + 4V56 + 8Vig
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— 8Vgo + 4Vgy — 4Vgs + Vigg — 2V + 4V — 2Vg — 4Viy — 8Vjpo + 4Vipg
+4Vios + 2Vigr — Vigs + Viin + Vitg — 2Vig + 4Veh + 4V = 0,

Lo = 2V — Vi + 2V, — 2V — 2V + 2V — 2V + 4V — 4V — 2Vip + 2V
+ 8Vgh + 8Vir — 8Vag + Vig — 4Vgy — 4V + 4Vg — 4Vi; + 4Vip, — 2Vipg
+2Viho — Vitp — Vihy — 2Vi5 + 4Vgg = 0.

Now we are ready to examine the variations of the ansatz under the local supersymmetry
transformations.

4.3 The variations of the ansatz
4.3.1 6L[eR*] terms

In the case of the supergravity, the variation of the spin connection is automatically can-
celled by solving (R.§). For the higher derivative corrections, however, the variations for
the spin connection do not cancel automatically. As discussed before the Riemann ten-
sors in the ansatz of L[eR*] are expressed by the supercovariant spin connection, and the
supersymmetric transformation for this field is given by

. 1 1 1
0 = =g + 56" — e v (4.21)

By definition the above transformation does not include derivatives of the supersymmetric
parameter e.

Now let us consider the variation of the ansatz £[eR*] under the local supersymmetry.
In order to execute this, it is convenient to use the variation of the Riemann tensor,

5Rabcd - e“ceyd(SRab,ul/ (d)) - Rabduée“c + Rabcuéeyd

= Dc&;}dab - Dd&bcab + Rabdeglyewc - Rabcegr}/%bd + 0(7/13) (422)

The covariant derivative acts on all local Lorentz indices. Since we focus on the cancellation
of the terms which linearly depend on the gravitino, we neglect the torsion part in the
second line. Let us vary b} term of L[eR?] in the eq. (f-5) as an example.

d(byeRabeaRabedRe pgnRefgh) ~ +b1€Rapea RaveaRe fgn Re pon€y*
— 8[)% eRiengzengabcdRabcdgfylwz (4'23)
— 321)% eRijkaRebcdDeRabcd€7k¢zj .

Here the partial integral and the Bianchi identity of the Riemann tensor are used to derive
the above expression. We also dropped the terms which are proportional to the field
equations since those terms are canceled by modifying the supersymmetry transformation
of de?,.

In a similar way, it is basically possible to vary the ansatz L[eR*] under the local
supersymmetry. Since this operation is systematic, we employ the computer programming
by the mathematica to calculate the variations. The result is given as follows.

SL[eRY) =
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+01(Vi —8V3) — 32V¢)
1
+ b ( =5 Va FAVIy = Vo — AV — AV 4 2V + 4V + 4Vf7)

+b3(Vy — AVi, — AVis — AVP + 2V — 8V + 8V2 — 4V — 8ViG, + 85 — 4Vi)
7 7

ZV22+V32 — Vi + Vg = Vip — B

1 7
woh(( - g%+ V- Vh+3v2)

1
+ b ( = Vs 2V = 3VS + 4V — AV AV — AV — 6V + 6V224>

1
+ bg (gvzsl — Vi = Vi5 +8Vig + V5 — V5 — 4V — 4V — 4Vig + 2V — 2v224>

+br (V3 + 4V — 4V — 2Vy — 8Vay + 8Vay — 6V + 2V + 2V + 2V + 2V

+ 2V + Vi — Vi — 2V — 2Vi% + 2V + 2V + 2Vig — 2ViG + 4V — 4V

+Vas — Vi) (4.24)
+b3(Vs + 4Vi7 + 4Vig — 8V — 2Va1 — 4Vay + 4V — 2V + 2V7 + 2V + 2V}

— Vi — AViE + 2Vig + 2Vi% + 2Vig — 2Vih — 2V + 6V — 4V + 2V — Vi)

+ by (%V; — Vi 2Vi7 + 2Vig — Vg +2Vag + 2V + V2 = 3VF — V7 = VZ =V
FVA+ VR - SVA+VA+VE+ VA +VE 4 VA - VA - 2V - 2V3
+ %VQQB - %V224>
+ big Gvﬁl + 6V 4+ 6V — 6Vig — 6V — Vi + Viy — 2V2 + 2V + 2V + 2V,
-2V 2V, — 2V 2V — 2V - 2V + 2V — 2V 2+ 2V - 2 )
+ b1y < - %V& — 14Vy7 — 14V + 14Vig + 14Vaq + Vyy — Vay +2V7 — 2V — 21§
— 2Vig + 2Vi] — 4Vih + 4Vih — 6V + 6ViE + 6Vig — 6V + 6V} — 6V
- avh+av3)

+ bio(— Vg +16Vy, — 16V, + 16V — 16VE + 16V2 — 16V — 16V — 32V + 16V3)
+ b1y (=7 + 4V + 4V — 2V5 — 4V — 2V5° + 2V — Vi + 233 + 2V35 — 2V
— 2V5 — V).

The variations which depend on the Ricci tensor or the scalar curvature are neglected.

As explained in the section ], those terms are cancelled by modifying the supersymmetric

transformation rule of the vielbein.

4.3.2 §L[ee1; ARY] terms

Let us consider the variations of L[ee;; AR*] under the local supersymmetry. Since we

are interested in the variations which are independent of the 3-form potential, we only

,27,



need to consider the variation of the 3-form potential in this ansatz. The calculation is
straightforward and the result is written as

SL[ee1 ARY = b2V + b3V (4.25)

Note that, because of the presence of the €17 tensor, the gamma matrix with 2 indices is
mapped to the one with 9 indices.

4.3.3 6L[eR%1)y)] terms
As discussed in the section f.2.3, by applying the field equations (R.1§), the variations of
the ansatz E[eRgiﬁiﬁ(Q)] are classified into three types.

For the terms with the coefficients f3, 57, f7.s; and f911792 in the E[eR?’?/_n/)(Q)], the
variations of them are evaluated as

5(eR?, ---z‘nij@/)’ilminzwij)

= 2¢R3

i1

.. . 1 o
Dze,yzl---lnzwm + 56R§1---ininxyZ]¢z711---2n271y6

= —2€E(DZR3 ),yi1---inz¢ij + IneeR3 [il---inﬂDin}wij

i1 ini] i1 inij |
1 . L L
_ §€R?1...ininggy”€{'Y“...M'}’Z"}/xy 4 Cn+17$yfyll...lnz}w27 (4.26)

n(n+1)

where C,, = (=1)" 2 . We used 41"in% = i1inn2 _palivin1pinl2 and the first equation
in (2.19).

For the terms with the coefficients fi 3, fis.43 and f715776 in the £[€R31/;¢(2)], the
variations of them are evaluated as

O(eRS, i, i ")

1 o
= 2R3 Dey*t i)t 4 §6R3 Ry ap "y ™e (4.27)

i1ind i1+ ind
— 9ur 3 i1in iz L p3 iz f irein 3y oy, dg-ein
= —2€€(DzRi1---z‘ni)7 P — 2€Ri1---iniR$y 6{7 Y+ Coy™y }T/Jz-

Here we used the second equation in (P.1§).
For the terms with the coefficients fi o5, fiyu7s and fi oo in the E[eR?’?/_n/)(Q)], the
variations of them are evaluated as
5(6R§1...inijzlzz')/ilwinwij)
| o
= 2€R§1---inz‘szze’Y“mz"l/Jw + §€R§1~~~inijszy”1/Jz’Y”“'Z"’nyﬁ
= —2e€(D. R}, ; ii" )" — 2e€R} 5y DY (4.28)
— §CneR3 Ry ey™ntina,.

11 tnij2

These variations are quite systematic and it is practical to calculate them with the aid of
the computer programming.! The result is expressed as follows.

5£[6R3@¢(2)] =

"We partially made use of the mathematica package GAMMA by U. Gran [@]
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2Vy — AV — 4V — Vi)
2V — 8VZ 4+ 8V + 8V — 8V + 8V — 8V& + 8V + 4V — 4VA)
2V + 2VE + 2V2 — 2V + 2VA + ViE)

+ fi(-
+ fa(—
+ f3(-
+ fL(V 4 Vag /2 + 8V — 2V)
+ f3 (Vi = Va1 /2 + Vi /2 — AV + 4V — 2V7)
+ [ (=Vis/2+ Vig + Vip /2 — AVE + 4ViE — 2Vp))
+ f1 (Vi + Vi /2 = 2V5 + 4V — 2V7)
+ 3 (Vi + Vag/2 — 2V — 2ViE — 21
+ fo (Vis + Vi /2 — 4V5' — 8V + 8V — 2V4)
+ flo(Vis/2 + Var /2 + 8VE — 8V + 8Vi§ — 8Viy — 2V7p)
+ f11(2Vay — 2V + Vil + 8VF — 8VF — 8V — 8V + 8V — 2V7))
+ Fla(Var = Vap — Vi /2 + 4V3! — AV — AV — 2Vi3)
+ fi3(2Viy + 2Vig — 2Vig — 2V — Vi /2 + AV — 4Viy — 4Vig + 4ViE — 4V

+ 4V19 - 2V13) (4.29)
+ fla(—4Vih — 4Vig + AV + 4V + Vi /2 — AV + AV — 4V5, + 4V — 2V7))
+ fi5(2Vas — 2Voy + Vil +4V7 — 4V — 4V — 2V3)
+ Fio(Vay — Vag — Vig/2 + 4V — 2V — 2V7 + 2V — 2Vj] — 2Vjf)
+ fir(Viz = Vao — Vaa/2 + 2V — 2Vi5 — 2V50 + 2V5) — 2V7%)
+ fis(=2Viy + 2V + Vip/2 — 2V — 254 — 2V33)
+ fio(Vig + Vag/2 — 2V — 2Vig — 2V74y)
+ fao(Vay — Vis /2 +2V5 — 2V — 2V — 2Vy)
+ far(=Vao — Vig/2 = 2Vi5 + 2V — 2V3)
+ fa2(Vay — Vi /2 = AVF + 4V — 2V3)
+ f23(2Vis — 2Vog — Viy/2 — 4V + 4Vi% + AV — 4V, — 2V3))
+ 202V} — 6Viy + Vig — Vi — 8V — 4V}
+ f25(2Vy — 6Viy — V3 + Vi — Vi — 4V — 4V — 4V3))

06(2Va = 3Vih — Vi + Va5 /2 — Vi /2 — Viy — AViZ + Vi + Vi — 2V7 +21F)

+ far(2V5 — 6Vi5 + Vi — Vg — 4V — 8V — 4V
+ fas (V3 = 3Vi5 + Vi — Vi + 8V — 16Vjg + 8V + 8V — 8V — 4Vy)
+ f29<2V61 12V + 12Voy + 2Vgy — Vi — 8Vjg — 4V}))

(Vs + 6Vi7 + 6V — 6Vig — 6V — 3V + 3Voh — Vi /2 + Vig /2 + Vi + 2V
— 2V + AV — AV, — 2V + 2Vig + 2V — 2V — 2V + 2V73)
+ f51(2Vg + 24V + 24Vig — 24V — 24V + Vig — Vip + 4V + 8V — 8V — 4V3))
+ f32(2V5 — 12Viy + 12Va) + 2V3y — Viy — 4V — 4V + 4V + 4V — 4V33)
+ f33(Va + Vi + 2Vig — 3Vag — 3Vas + 3Voy — Vi /2 + Viig /2 + Viig — Vg + Vig + Vi

+ f3

+f30
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— Vi + 2V — 2V + 2Vig — 2V + Vi — Vg — 2Vi + 2V4)
+ f34(2V5 + 4V + 8Vig — 12V + Vi — Viig + 2V — 2V5; — 4V — 4VRR)
+ f35(2V) — 6Vig + Vi — Vg — 4Vih — 2V — 4V7y)
+ f36(2V7 — 8Vay — 3Vay — Vis /2 + Vig/2 + Vo — Vit + Vg — 2V — 2V — Vi
— 2V30 + 2V5))
+ f37(2Vs + AV +2Vig — 6V — 3Vay — Vi /2 + Vi /2 + Vi + 2V — 4V, + 2V
— 2V§ — 2V, + 2V33)
+ f55(2Vih + 2V — 4Viy + Vig — 4V — 4V — V)
+ fa9(Var — 8V + 8Vih + 8V — 8VE, + 4V3)
+ f10(8Viy + 8Viy — 8Vig — 8Vyy + 4Vyy — 4V, + Vig + 4V — 4V + 4V + 4V
— 4V +2VA)
+ fi1(=8Vi7 — 8Vig + 8Viy + 8Vay — 4V3) + 4V + 2Vgy + 8V — 8V — 4V + 4V7)
+ [an(AVig — AV + AV — AV5y + Vg + 2V — 2Vsg + 2V — 2V — VA + V)
+ fig(—4Vis + 4V — 4Vay + 4Vl + 2Vgy + 4Viy — 4Vig + 4Var — 4V, — 4V + 4V
+ 4V — 4V, + 2Vi)

+ L (Vs — Vi — Vi + 2Vi — Vig /2 + 4Vi3 + 4V — 2V}

+ fis (Vi) — 2Vih — Vg — Vigs /2 — 2Vig — 2V — 2Vi)

+ fis(— 2Vg + Vis + Vi — 2Vi — Vip /2 — 2V — 4V — 2Vg)

+ fir(Vy +4Vis + 4Vig — 4Vig — 4V — Vi /2 — 2V + Vig /2 + 4V — 4Vih — 4V

+ 4V — 2V
+ fis(—4Vig + 4Vyy — Vi + 83y — AVS + VS + 4Vig — 4V — 2V3)
+ fio(Vih — VIE/2+ V3 /2 — 2V — Vig/2 — AV + AVE — 4V + 4VE, — 2V)

+ fao(Vi + 4Viy — 4Vig — Vi + Vg + 2V — Vi /2 + 4Vih — AV, + 4V — 4V — 2Vip)

(

(

+ fa1(4Viy — 4V + Vg + 2V — 2Vig + Voo/2 — Vi /2 — AV — 4V — 2V3))

+ f52(
+ 4V40 + 4V — AV — 2Vi)

+ fag(=Vy —4Vih — AV + 4Vig + 4V — Vi /2 + 2Vig + Vi /2 + AV — AVig — 4V
+ 4V52 — 2Vi3)

Vis/4 — 2Vig + 2Vig + Vi) + Vis — Vis — Vi + Vo + Vi + Vio/2 — Vi /2 — 4Vap

+ fan(=Vg 24+ Vib/2 + 2V + 2V — 2V — 2V — Vi /2 + Vi — Vigy — Vigs /2 + Vio/2

+4Vih — 8Vjg + AV — AV + 4V, + 4V — 4V — 2V3))
+ [35(Vis + 4V + 4Vis — 4Vig — 4V + 2Vjg — 2Vi — 4V + Vs — 2V + 2Vg — 4V
+ AV — Vg + 4V — 2Vi)
+ f6(—2Vis + Vis + Vi + 2V — Vigg — 2V — 4V — 2Vip)
+ far(Vis + 8Vih + 8Vis — 8Viy — 8V + Vig — 2V — Vigg — 2Vag — 4Vih — 2V3%)
+ fa5(Vo /2 = 2Vig + 2V — 2Vig — Var /4 + Vg + 2Vig — Vo + Vg /4 — Vigo /2 + 2V5
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— 2V5) — 2V5%)

+ fso (Vs — 2Vig — Vip/2 + Vig + 2Vay — Vi /2 — 2V + 2V — 2V5g)

+ foo(Vis — 2Vig + Vi — 2Vig — Vigr /2 — 2V + 2V — 2Vgp)

+ for (Vi — 2Vig — Vin /2 — Vi + Vig + Vig /2 + 2V — Vigr /2 — 2V + 2V, — 2Vi)
+ fea(Vi5/8 = Vig + Vig — V51/2 — 2V + Viy — Vag — Vg + Vo — Veu /2 + Vo + Var/2

— Vis/2 = Vo /4 + Vigo /4 + 2Vi5 — 2Vig — 2V)

+ fas (Vg /4 = Vip — Vi5/8 = Vig + Vi + Vai /4 + Vi + Vo — Vo + Vais /4 — Vs /2
+ V/2 — Vigo /4 — 2V + 2Vig + 2V — 2V — 2V¢)

+ foa(=Vg + Vig + 2Vig — 2Vig + Vig — Vo + Vg — Vo — 2Var — 2Vig — 2Vg)

+ fa5(—2Vay — Vi +2Vis — 2V56 — Voo /2 + Vi /2 — 2V + 2Vi; — 2V + 2V — 2V

+ foo(=2Vah = Vay /2 + 2V + 2Ves + Vigg /2 + 2V — 2V — 2V + 2Vig — 2V + 2Vi
+2Vj§ — 2Vj§ — 2Vg)

+ for (Vo — 2V + 2Viy — Vi + 2Vag — Vi /2 — 2V — 2V — 2V)

+ fas (Vo /2 = Vai /2 + Vo + Vi /2 4 Vi /2 — Vg + Vi — Vi — 2Vi + 2Vig + 2V5)
— 2V — 2V + 2V + 2V — 2V — 2Vid)

+ foo(Vai + Viir /2 = 2Viy — Viio /2 + 2Va% — 2Vi% + 2Vjg — 2Vi2 — 2Vi)

+ fro(Vas + 2Vas + Viis + 2Vgr — Vi /2 — 2V + 2Va% — 2Vi2 + 2Vijg — 2Vip)

+ 11 (Vo /2 = Viy /2 = Vs + Viig — Vil — Vi1 /2 + Vs /2 — Viir + Vigz /2 — Viga/2
— 2Vi7 + 2V + 2V — 2V — 2V7))

+ f12(Vay — Vi — 2Vay + Vis — Vils + 2Vgg — Vigg /2 + Vi1o/2 + 2Vag — 2Vih — 2Vib)

+ f13(Vo 4+ Vai /2 = Vo + Vi /2 4 Vi /2 — Vo — Vi1 /2 + Vigs — Vi + Vips /2
— 2V + 2VEy + 2V — 2V, — 2V3)

+ J7a(=Vo A+ Vig + Var /2 = Vip /2 = 2V + 2V + Vigr + Vi — Vi — Vin/2 + 2V
— Vior /2 + Viga/2 + 2V5r + 2V — 2V3))

+ f75(—2Vo — 8Veg + 4Vgy — 4Vig — 4Viz + Vig)

+ f16(—2Vgs — 4Vigy + 8Vigy + Vi — 2Vis — 2V — 2V — 2V3)

+ frr(—=8Vi + 8Vig + 2V — 2V + 16V + 4Vss — AVig — 4V — 4V, — 3V + 3V
— AV — AVE — 4V3))

+ Frs(=Vas + Vag — 4Vig + 4V + 8Vay — 6V + 2Vry — 2V + 4V — 12V + 12Veg
— 2V — Vg + 4VEE + 2V5, — 2Vi)

+ fro(—4Viy + 4Vig — Vyr /2 — Vi + Vil + 2V + 2Vag — 2V — 2V + 2V, + 2V,
+ 4Vgs + Vi + 2Vih — 2V, — 4Vgy — 3Vgg + 3Vigg + 2V — 2V + 2V
+2Vjg — 2Vsp — 4V3))

+ fio(—Vas — Vib/2 = Vil + Vi + Vils /2 — 4Viy + Va5 — Vigg + 2V, — 2V — 2V5g
+ 2V — Vi1 + Vgz + 6V + 2Vig — 2Vig + 2Vgo + Viiy — Vi — 4V — 3Vey
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+ 3V — Vir — Vi + Vir — 2V + 2V — 2V — 4Vi)

+ fa1(Vis — Vi /2 + 2V — 2V — Vi + Vi + 2Vigy — 2Vigo + Vai — 3Vigs + 3Viog
— Vo — Viu + 2Vh — 2V — 4V7))

+ faa(Vao/2 + Vg — 4Vis + Vir /2 — 2V — 4V + Vi — 4Vig + 4V — AV + 4V
— 2Vgh)

+ faz(—2V3o — Vg + 16Vsy — 16Vg5 + 16V + Vigs — Viia/2 + 8V — 2Vg3)

+ faa(—Vag — Vo + 2V5 + 2Vag + 8V — 8Vig + 8Vigs — 8V + 2Vine — Viis/2 — 2Vig
— 2Vgs — 2Vg))

+ fas(2V3h — 2VE, 4+ 2V +4Vh —4aViE — oVh 4 8VAL + AV — 4Vis + 2Vih — 2V7)

85(2V3; 32 41 43 45 47 52 97 98 109 110

— Viig — AV + 4Vgr — 2Vg)

+ fi5(2Vag — Vo + 2Vih — Vi — 4Vis + 4V — Vi + 2V + 2V
+ Vi + 2V — 2V — 2VE)

+ far(Vay + Vi — Vi /2 + Vi — Vijg — 2V — 4V + 4Vg + 2V, + 2V, — 2Viy
— AVige + 2Vigs + 2Vigy — Vige/2 + Viia/2 + 2V — 2V3 + 2V — 2V — 2Vid)

+ fag(Var — Vi — 2Vi3 + 2Vig — Vi — 2V + 2V + Vijg + 2Vis — 2V + 4Viy — 4Vig
— AViy + 4V — 2Vi) + 2V — 2V, + 2V + Viy — Vil + 2V + 2V — 2Vi%)

+ fao(— Vi + Vi /2 + Vi + Vi — Vig — 4V, + 4Vig + Vig /2 — 2V — 2Vigy + 2V,
+ Viha/2 — 2V + 2V — 2V, + 2Vigs — 2Vgy)

+ fo0(2Vag + 2Vay + Vi — 4V, + Vgg — 4Vgy — 2Vig, — 2Vig + 2V — 2Vgh)

+ fa (—4Vay — 8Vib + 8ViL — 8VIL + 8VZY + 32V — 32Vl 4 32Vih + 2V, + 4Vih
— 16V, — 8V — 6Vigs — 24Vigs — 3Vihg — Vi5 — 4V — 8V)

+ f92(8Vay — 8Vah — 8Vay + 8Vg + 4Vih — 4V, + 8V — 8Vjy — 8V + 8V — 4V
+4VE + 16Vah + 8Vik — 8Vik + 16Vih — 16Vik — 16VE, + 16V — 8V, + 8V,
+ 4V 4 2V, — 8V — 16Vig + 16Vg + 8Vgy — 8Vis — 12Vy; — 12Vjge + 12V},
— 6V/y — Vit — 4Vih — 8ViY).

The variations which depend on the Ricci tensor, the scalar curvature and the field equa-
tions of the Majorana gravitino are neglected. As explained in the section [J, these terms
are cancelled by modifying the supersymmetric transformation rules of the vielbein and
the Majorana gravitino.

4.3.4 5£[€R2IE(2)D¢(2)] terms

Finally let us evaluate the variations of E[6R21Z(2)D1/)(2)]. The transformations of the terms

in this ansatz are expressed as

o - 1 o ~
kl iy _ kl— i
51 (e R kiy i, A Do) = —§€Ri2jkli1---ian:vy ey iyt Doyt

1 n(n+1) 2
+ (=1 2 Rk i

5 Ry Tey™y Dy (4.30)
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n(n+1) 9

1 n(n+1) o .
+§(—1) 2 e(DZszklil---inz)nyZ]EVJCy'YZl Z”Wd-

And it is practical to obtain all variations by employing the computer programming. The
result becomes as follows.

SL[eR* Yoy Dipa)] =
+ [T(2V2 +2V5 — Vi + Vix — Vas — Vi1 /2 + Vs /2)

+ (Vs + VA2 = VE/2+ Vi — Vi — Vi /24 Vi /2)
+ f3(=2Vih — VA = Vib — Vi3 /2+ ViR — Vi /2 — Vi3 /2 4+ Vg /2)
+ (Ve + VA2 = Vib = Vi /24 Viy = Vi 2 = V33 /2 4 Vs /2)
+ (VR VG = VA + Vig/2 = Vid /2 = Vg /2 + Vi§ /2

— Vi = Vib/2 + Vg /2 = Viy /2 — Vi /2) (4.31)

+ G (=Vib = Vig /2 + Vi /2 = Vi /2 — Vay — Ve /2 — Vi /2)

+ f2(Vas /2 = Viy /2 — VR JA+ VP [+ Vi /A — Vig /8 — Vi, /8)

+ e (=i = Via/2 = 2V5) + Va3 /2 + Vi /4 — V)

+ fo(=Viy — V)2 = 2V5 + Vs /2 + Vik /4 — Viy)

+ (Ve = V3 /2 = VIS 2+ Vit + Vi — Vi + Va3 /2 = Vi /2 = Vi /2)

+ RV = Vi /2 = Vi /2 4+ Vi + Vih — V3 + Vs /2 — Vi /2 — Vi /2)

+ (Vs = Vi /2 = Viy JA+ Viy + Viy — Vi + Vi /4 + Viy [A = Vi /2 — Vi, /2)
+ (= Vi = Vis /2 = Vip /4 + Vi + Vig — Vo) + Vig /4 + Vo /4 — Vo /2 — Vi /2)
+ (V2 = Vg /2 —2VE — Vi)

+ fH5(2Vir — 2V + 2V — Vil — 2V + 2V — ViR /2 + Vi /2 = Vi + V' /2
+ Vo A+ Viy /24 Vi /2 + Vi /4 + Vb + Vi + Vab /2 — Vi — Vb /4 + Vig /4)
+ fio(—Vias + Vou — Vag 2+ Vig = Via /2 = Vi JA+ V§ = V& /2 = Vi /4 = Vi /2
— Viy/2 = Vi /4 = Vi — V) — Va5 /2 + Vi + Vb /4 — Vg /4)
+ (V% — 2Vig + 2Vih + 2V — 2Vid + 2V — Vi + Vi — Vip/2 + V5 — 21
+ Vio — 2Viy + Vi + Vah + 2V5) — Vi + 2Vgh + 4V + Vb + Vg /2)
+ fia(—2Vis + 2V — Vi — 2V + 2Vig + V3 /2 + Vig /4 + V)2 = V2 = VB
— V324 ViE/2 = Vi — Vb /2 — Vs /4 + Vi /4)
+ fro(Vib+ Vis — Vi — VR /2 — Vi + Vi + Vig /4 — Vi /A — VA /2 + V3% /2 + Vi /4
— Vas/2+ Vg + Vit — Vi + Vi + Vo /4)
+ foo(=VE + V§ + Vig + Viz = Vi + Va1 — Vi — VA /2 + V3 /2 + Vi
— Vi /A + Vik /2 = Vas /2 = Vi A+ Vi /2 = Vi — Vi + Vi — Vi) — Vg /4)
+ f(=2VF + 2V = Vg + 2Vig — Vi /2 — VP + Vi + Vib + Vi — 2Vi
— 2V + 2V + 2V5) — Vb — Vi — Vi — Vo — 2V — Vg — Vi
+ Vih — Vib /2 + Viy/2)
+ 3 (2VF = 2VF — 2V§ — 2ViG + 2V — 2Vi§ + 2V + 2V — 2V + 2V — Vi)
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+2VE) — 2Vig + Vig/2 — Vi /2 + V' — Vi — Vi) — Vi3 + 2V + 2V3% — 2V
— 233 + Vay + Vi + Vb + Vo + 2V + Vg + Voo — Vi + Vi /2 — Ve /2)

+ fa3(—2VE + 2VE — Vi + Vag + 2V — Vi /2 = Vi + Vi3 /2 + Vi — 2V — 2V
+2V5 + Vi /2 — Viy — Vi — Vb — 2Vih — 2V — Vi — Vi + 2Vi% + 2V
— Vi /4 + Vi /2 + Viy/2)

+ 3 (=2VE + 2V + 25 — Vi + 2V + Vi /2 + Vi — Vi3 /2 — Vi + 2Vig + 2V
— 2Vi3 — Vin/2 4 Vi + Vil + Vb + 2Veh + 2V + Vb + Vi — 2V — 2V
+ Vs /4 — Vih/2 = Viy/2)

+ f35(=VE 2+ Viy — Vs + Ve — Vg + Vi /4 + Vig /8).

Now we obtained all the variations of the ansatz.

4.4 Summary

As this section is quite long, let us briefly summarize the results obtained so far. The ansatz
for the higher derivative effective action is given by the sum of the eqs. (5), ([£7), (9)

and ([LII)),
L= £[€R4] + £[€€11AR4] + £[6R31/;1/J(2)] + £[6R21/;(2)D¢(2)], (4.32)

which contains totally 132 terms. The variations of the ansatz are expanded by the 264
bases of V[eR*&)], V[eRQDRE¢(2)] and V[6R3€D¢(2)], which are given by the eqgs. (#.16),
(#1g) and (E19) respectively. The terms of V[eR*&)] and V[eR3€D1/J(2)] are related by
the 20 identities (4.20). The results of the variations of the ansatz are expanded by the
264 bases as the eqs. ([{24), (£-29), (E29) and (f.31)). Notice that these variations do not
contain terms which are proportional to the field equations. Thus the sum of them is just
the variations V defined in the eq. (B.9).

20
V =0L[eR"] + 0L[ec11 ARY] + 0L[eR*Pia)] + L[R2y Do) + D inIn.  (4.33)
n=1

The 20 identities are also included.

The requirement of the local supersymmetry insists that all coeflicients of the bases
should vanish, which gives 264 simultaneous equations. For this purpose, we arrange the
variations as

+ (b1 + 2f5) V)

(=b5/2 + by + 2fa5 + 2f56) Vs

(=bi/8 = by /4 + b5 /8 + 2fa; + fa5)V3

(—bg +2f35)Vi

(b7 + bg + by /2 + 235 + fa3 + 2f30 + 2f57) V5

(b 0/4 bi1/2 — bl + 2fa9 + f30 + 2f31)Ve

(=bj — biz + 2f35) V7 (4.34)

+ o+ o+ + +
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+ (=21 + 2fds + fag — foa + 8iz + dirg + 2i13) Vg
+(=2f5 = 2fls + fir — f53 — f34/2+ fas/2 + fas/A+ for + fas/2 + fr3/4
— [34/A+ 2ig + dig + 2i10 + 211 — 212 — 13 + 2415 + d16 + i17) Ve

(=235 = 2f5s — fos + Jra + 8ira + dins — 12017) Vi

(—8b} + f1 — 69y + fis + 2i7) Vi)

(—4b3 — fg — 3fas + 2f35 — fia — 2f15 + 21 — 8ir)Viy

(—4b3 — f5 /2 + f = 3fa5 + 235 + fio + f30 + f35 — 256

+ 20y + 2ig + dig + 2i10 + 2i11)Viy

+ by + f5 + fo — 6f25 — 4fss + foo + for + fou — 4in — dina — 2i13)Viy

+ (bi+2b5 — b + fo + fio/2 — 6far — 3fas + Jis — Ji9/2 = o)A+ F5/2
+ foo + f37 + foa/8 — fos/8 — s — 2ig — ino — i) Vi

+ (86 + fig — 635 — 2fg0 — foo + Sinz + 4irs) Vi

+ (4bg + 2bg + 6bly — 14byy + 215 — 4fly + filz — 2f1s + 6f30 + 24131 + f33
+ 454+ Afsy + 8Fio — 8Fiy +Afir +Af50 +4f51 — Af5s + 2f50 + 4f55 + 8f5
+ 2fds — 8ft — Af7g + dig + 8iy + 205 + dig + Sig + 16ig — 8i12) Vi,

+ (4b7 + 4bg + 2bg + by — 14bi; + 213 — 4f1y + 253 + 6.f30 + 2435, + 2f33 + 834
+ 2f37 4+ 8fio — 8f41 + Afdo — Afiz + Afdy — Afds — 2f50 — 4S5z + 2f54 + 4f35
+8f57 — 2f59 + foo — fos + 2f6a + 817 + 479 + iz + 8is + 8iro + 8i1 — 4i13)Vig

+ (—6big + 14byy — 2fi5 + 4f1y — 630 — 24f31 — 8fdy + 8f41 — 4fdy — 4fs0 + 252
+ 453 = 2f5u — 455 — 8f57 — 2fas — 2fe1 — 2f5a — 4is — 8is — 8is — 16ig — Sirg
— 8i11 + 8i12 + 4i13)Vig

+ (—4by — 8bg — 6bjg + 14byy + 4bly — 2f15 + 4f1s — fi7 + 2fls — fo1 — 253
— 630 — 24f31 — 3f33 — 12f34 — 3f35 — 6.f37 — 8fdg + 8fdy — 4fho + 413
—Afir +Afis — Af51 +Afs3 — 2f50 — Afss — 8f57 + foz — 4iz — 8ia — 2i5
— dig — 8iyg — 4i13)Vay

+ (=27 — 2bg — by — big + byy + 16b1y + 211 + fio + fao — 12f29 — 3f30 — 337
+ 41l — Aft — 2fd5 — 2fd6 — 2fgr — fas/2 + foo + [1/2 + fra + f13/2+ f14/2
+ 2ig + 4iy + 12i14 — 3i1g — 6irr)Vay

+ (b — biy — 16biy — 2y — fiy + 12fa9 + 3f30 — 4fio + 4fds + 2fe7 + fos + fro
— fH1/2 = fi — f1a)2 — 2i3 — dig + 8i1s + dire + 4i17)Vay

+ (—8b7 — dbg + 2bg + 4bis + 2f15 + fig + fao — 12f3 — 3f33 — 3f56 + 41 — Afis
+ 2fd0 — [ — 2fk, + 25 + dig + Sits + dire + 28i17) Vay

+ (87 + 4bg + 2bg — 2fi5 — fig +12f35 + 3f33 — Af iy + Afis — 2f12 — fr3 +2f7
— 205 — dig — 24i17)Vay

+ (= fla + 255 — fso + 4ir + i + 2i20) Vag
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(fis — fin/2 = fss/4 = fig + fso/2 +is + 2ig — i1g — 19 — i20) Var
(f35 + 2fo0 + 4i12)Vag

(f1/2+ fas — faa — 4fo1 + 2i18) Vay

(fo/2+ far + fs2/2 — 2[5 — faa — 8fg1 + ia + 4i18) Vg
(—f3/2 = fas + 2fg5 + fas + 8o — 2i10 + i) Vi
(f3/2+ f5 /2 + fa5 — 2fs5 + 2fs6 + fsz — fss — 8o + 201 + 2i19 — 2i20) Vi
(fi1 + 2f20 + fir — 2fds + fsg — 8fgp — i3 + 2i19 — 2in0) Vs
(fi5 + 230 + 2f50 — i5)Vas

(f7/2 4 fas/2 + fis — fis + 2f30 + 8fg1 + i1 — 4i1s) Vs
(f3/2 = fas/2 — fis + fao — Afgs — 8fg1 + i1 + 27 + di1g) Vg

(fio/2 + fos + fio/2 — f1o/2 — fso — fsn/2 — 2ia —is) Vi

(flo/2 + f35 + féo — fso + 2fss + 8az + dira — 4irg) Vig

(Fla/2 + f31 = f33/2 + f37 + Fis + 2f30 + 8fg1 +ia — i1 — 4i1s) Vg
(fis/2 + faa + fa1 + 2f 77 + is + 2i01) Vig

(—f22/2 = f37/2 — fo5 — foo/2 + 2fs5 + 4fa2 — 4i1a — 2irs5 + 2in0) Vi
(—fa3/2+ f37/2 = fis — f30 — f30/2 = f61/2 = 2f72 — fio — fio/2 + fir
— fas + fso + foo — 4fg2 + 2is + 4ig — 2ia0) Vi

+ (= fl6/2 = f33/2 + f22 + 4d5 + 82 + i + 4iz20) Vi3

+ (= flr/2+ fa5/2 = for — fso — 2fss — 8fgn + 5 + 4ire) Vi

+ (= f20/2 = f36/2+ Fio — fia + fa1 — Afgs — 8fan — 4irs — din0) Vi

+ (

+(

+ (

+ 4+ 4+ + o+

— /2 + f36/2+ 3o + fa1 + fao + 2fss + 89z — 4ina — 4i19)Vig

—fl2/2 = f30/2 = for + foo/2 — f31/2 — 2fg5 — 4faz + 2ia + 2i15 — i) Vi

—f13/2+ f30/2 + foo + f61/2 + Flo + fs0/2 — far + fas — fso + 4fa2

+ i3 — dig + 2in0) Vs

(2135 + fou — 4f7s + 8fsa + 32fq1 — diro + 2i13 — 16i18) Vi

(2f14 — 235 + 4f7s — 881 — 32fg1 — 8ir + 4iro + 16i15) Vs

(—2fis + fao — [34/2 = fe2/2 + foa/4+ 2f19 — 4ig + 2i10 — i13) Vs

(—2/fg2 + fo3 — 450 + 85 + 16 fag — 4i13 + 8iz0) Vi

(—4f35 — foa + 8f7s — 4fso + 16 fa5 + 32fg1 + 8iro — 2i13 — 16i18)Vas

(81 + 259 + 16f7; — 16ig + 8i12)Vsy

(2f31 + f3o + 2fe5 + 2fa7r + fos /2 + F73/2 + 4F17 + 2f79 + fao — 4156 — 237

+ 2fdg + 8 + 410 + din1 + 4irg — d16 + 2i17 — 4irg) Vis

+(=2f31 = f3o + 2f55 + fau — 2fa5 + fos/2+ f13/2 — Af7r = 2f19 — fso — 25
— 890 — ding — dirs — i1 + 2i17 + di1g)Vig

+ (foo + f7a+ 2fs0 — 4fs7 + 4fss — 4fsg — 4fg0 + 16 fg5 + 4ir3 + 12i17 + 8ino) Vi

+ o+ o+ o+ o+ o+t
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+ (2fss — foo + foz + f1a — 2f50 — Afgs — 16fgz + 8irg + 1217 + 8irg) Vig
+ (= foa + 71— f1a — 230 + 2fa1 + Afgr — Afss + 4fd0 — 16f55

— diyg + dire — 8irg — 8izo)Vay
+ (foo — foz — fn — f7s + 2f50 — 2f51 + Afgs + 16 £ — ding — diry — 8irg) Vi
+ (= fa2 = F11/2 = [13/2 = 2f19 — fao — far + 4fs6 + 2fs7 — 2f3s — 8fa2

— di1p — 216 — 2i17 + 4i19) Ve
+ (=2fdr + f3o — f3a — fas + F11/2 = [1a/2+ 2f19 + fao + fs1 + 2fss + 8o
+ dig — diyg + 2i16 — diry — 4i10) Ve,
(= f54/2 + fi5 + 256 — 2f57 + fa3/4 — 675 — diro + 2011 + i13) Vs
(fi2 — fo2/2 + foa + 2f79 + 4i10) Vi
(—2fdo + 2f30 — fo3/2 + 479 + 4ig — 8ig — 2i13) Vg
(—2f60 + 2f61 + fe + 650 — Bira + 4in3) Vi
(2f56 — fos = 259 + 2f10 — f1 + 2f1s + 2fs1 + 8i1a — 8irs — 2416 + 16i17) Vg
(246 + fos + 2f72 + f13 + Bina — 216 + 4ir7) Vs
—fa1+ 2f31) Ve
—far +4f91) Vi
—fa5 + 4fg5)
—fag + 2fg5)
32 V73
(—fas + 2f75 — 16£51) V74
(—fas + f79) Vs
(—f35 + 230 — 8.92) Vg
(—f31 — 2f1s — 8f01)Var
(—f31 = 4f17)Vis
(
(
(

+ o+ o+ + o+

“ﬁ’\’\’\’\

Vi
Vi

fa3 = 2fg0 — 16fg2) Vg

36+ 250 — 2fs1 + 16f52) Vi

fa0 + 279+ fio + fs1 + 8f32) Vs
+ (f37 — 4f17 — 279 — fo — 892) Vi
+ 475 Vzs

— 4f29Vss

— 4f50Ves

+ (fas = fla/2 = fig — 2ir +1i19) Vi

+ (f39 — fa6/2 + fs2/2 + io — 2i18) Vi
(f4o + fir/2+ fis/4+ fao/2 +is — ira + i20)Vig
+ (fi2 — f58/2 + fao + 2i12) Vi

+ o+ o+ o+ +
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f51/2 = fe5/2 = feor/2 = 2f15 — 3f17 — 11 + i14) Vg
f51/2+ f53/2 + fos/2 + 3f77 — i1a — i15) Ve
f59/2 2f76 - 2Z12)‘/92
2f11 — 2fss + 2f36 + 8irs — 2i19) Vs
245 — 2fs9 — 4fg0 — 4iz0) Vou
2fas — fou — 1275 — 16f35 + 8fay — 4iro + 2i13 + 16i15) Vs
2f35 — 815 + 12f7s — 4fdz + 16 fgz — 834 + 4i10) Vi
fe2/2 = 330 + Afss + 2fs7 — 2fss — 2i13 — 4in) Vgy
fo2/2+ fa3/2 + 3fs0 — 4fd5 + 2fds + 4ir0 + din) Vg
F52/2 = foa/4+ 475 — 379 + 256 — 2010 + 13 — 2i19) Vi
f52/2+ f34/2 + foalA = fi3/4 + 3F79) Vivo
f74/2 = 416 — 2fg7 — 2fd9 — 2fo0 + Giry — ding — 4izo)Viey
fés — fis — Afgr — 2ire + 4ir7 — 8i19)Vigy
f/2+ f13/2 = 3fg1 + 2fgr — 2i16 — 2ir7 + 4i19) Vipg

(

(=

(-

(

(

(=

(

(

(=

(

(=

(-

(=

(

(=

(—fi5/2 + fi3 — 6.fo1 — i) Vigs

(—f36 — f3r + 2fsa — 24fg1 + in1 + 4i18) Vig
(—fe0/2 = f31/2 + fs — 1250 + 2i12 + 2i10) Viigy
(—fio/2 = f30/2 — fs7/2 — is — 2ig — i19) Vios
(fo6/2 — f12/2 + 2fg5 — 1250 — 214 — 2i20) Vipg

(—fo0/2 = f10/2 + f72/2 = 2f35 + 12fg5 — 2i15 + 2i20) Vi

(fs2 + fag + 4i1s + i10) Vit

(f89/2 Z20)‘/112

(—f33/2 = f34/2 = 3fa1 + i18) Vi3

(—fa5 + f3n/2 — fis — 6fop + 1o — i20) Vi

(b7 — fo1)Vihs

(b3 — fo2)Vite

(—32b) — 4b3 + 8f4 — 2fg — fi)V}

(—bj + 2b3 — Tbi/4 — 3by + b — 2f7 —Afg — f35/2)Vy

(—4bj — 8b3 + by + 4bg — 4bg — Af5 + 8fly + fia — 2/5) V5

(- 4b2 +8by — b — 4by — 4bg — 4f5 — 81 — 2flg + [Ty — 2f5) Vi
(—6by — 2bg + by + 16b1y + 41y + 411 + 2fa0 + 2f53) V5
(2b7 — 3by — 16bjy — 2b{5 — 41y — 216 — 230 + 2/5) V5

(2b7 + 2b§ — by — 2bjg + 2byy + 16b1y — 85 + 8f11 + 415 — 216 — 2f20
—2fF — f3 — foo + 2f5)Vi

T e i i i e e S e S S i

,38,

JH/2+ f14/2 4+ 8f76 + 3f31 + 2fg7 + 2fgg + 2i16 — ditr + di1g + dizo)Vipy
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+ (203 + 208 — b) + 201, — 2b1; — 16b}y — 4bi; — 8F1 — 4fls + 216
+[2 = 2f3 = 2f3)VE
+ (2b — by + 2bjg — 2b}; — 16bjy — 2b13 + 8fy + 2f3 — 81} — 4f5 + 4f2
+ 2f12 + f220 — 2f5)V5
+(20 — 32b1, + 8f3 — 81y —4fly — 2f3 — f§ + flo + f30 — 2/%) Vi
+ (2b7 + b9 2b + 203, + 16bY, + 20}, + 2f3 + 8fL — 2fis — f2 4+ 2f% + 2f2)VE
+ (b7 + 203 + /2 + 2blg — 4byy — biy — 4fiy — 2fis + [35)Vi5
+ (2b3 4b3—b7—b8—b9/2—2b0+4b1+4f71+4f114—f225)V123
+ (— 2b7+b9+26 — 6b1, + 2b15 — Aff +Afis 4+ 2ff — VA
+ (—2b7 — 4b§ + by — 2blg + 6biy + 25 — 4f] —Afly — 2l — 2fay — 4fa3 — f3)Vi
+ (4b — 8bL + 2b1 4 2b% + b) — 201 + 601, + 4f3 — 4afly — VA
+ (4by + 8bY + 2b] + 2b3+ b+ 2b1y — 6byy + 45+ 415 + 4fs — fo + 2f15 + 2f 1) Viy
+ (by + 4by — 4bj + 2b7 + 2bg + by — 2b10 +6by, — 8f5 — 2f3 +8fly — 4fl3
— 2fTs — 2f7 + fio + fao — 2f5) Vi
4 (—b) — 4b} — 4b§ — 2bF — 208 — by + 201, — 6b1; + 8f3 — 8fly + 4fls — 211y
+ 2115 + 2f1 — fio — fao + 2f3) Vi
2bg — 2bg — 2b13 — 2f17 + 2f35 + 2f34) Vi
by + 6by — 2bys — 8fy + 2f17 + 2fa1 + Afas + fao — 2f3) Vi
Abp — 4by — 26 + 8f3 + 23 — 4f35 — f3y +2f5)Vy
bl /2 — 6b: + 204 + b + 204 + b /2 + 201, — 4b1, — bis + 4f) + fi — 8fd
—Afly = 2fls+ f3 + /2 — fis — 2f1s) Vs
+ (7L /2 4 6bL — 2bf — b — b — by /2 — 2}, + 4b, — 4f} 4+ 8fd +4AfY
+fi— f72/2 + [l +2f5)Va
( 4b3 2f8 f126/2 - f128)‘/225
( 8f24 2f45 f14/2)‘/226
(—4fa6 — 4fs5 — 2fea + f35)Vay
(4f55 — f35) Vi
(—4f37 — 2f16 — 2f57) Vi
(4f31 + 2f34 — Af37 — 2f55 — 2f41)Vao
(-
(
(
(-
(—f
(f33

+ (=
+(
+ (=
+(=

2f34 + 2f55)Va
fa6 = 236 + f35/4)Vas
4fiy+ Af50 — [1a/2) Va5
4f25 Af50 = 2f61 — fio/2)Vih
— f36 + 2f56 — 2f70 + 2f12) Vs
- 2f66 f5 = f33)Vig

o+ + o+ o+

,39,



(2f30 + f33 + f36 + 2f37 — 4f31 + Afs5 — 2f66 + 250 + 2f70) Ve
(=230 — f33 — 4f55 + 2fd6 — 250 + [33) Vs
(8fas — 4f52 + 4f34 + 2fd2 — 2f63) Vo
(1625 — 4f35 + 4f52 — 831 + 2f63 + 2f3)Vih
(8fas + 4f54 + 23V

(—4f35 — 4fis — 2f30 — 3/2)Vid

(4fds +4fds — f3/2 — [5)Via

(—4f5 — 4flg — 2f50 — [ /2)Via

(—4f33 +4flg — [ia/2)Vi5

(2f4 — 2fg6 + 2fd0 + F2/2)Viig

(—4f32 + 256 — 2f50 — 2f10 — [2/2 — f§/2)Vir
(=8f39 — 435 + Afir + 2fg6 — f3/2) Vi
(4f32 + 4fdo — 4f 17 — 266 + 2f10 — 2f 72 + £3/2 + 16/2)Vig
(435 — 2140 + 2f53) Vi

(—8f39 — 4fi7 — 4fss — 2f35 — [3 — [1a/2 — f30/2)ViA
(8139 + 417 — Afs1 +4f35 — [T + f30/2)Vin
(8fas + 8139 — 4fig — f31)Vis

(—8fag — 235 — 839 + 4fig + 250 — [3) Vi
(233 + 4f 13 — 2f62 + 2f63) Vs

(—2f33 — 236 — 4fd3 — 2fd3 + 2/T0) Vs

(4115 — 2f5s — 2f7 — 2f13 + 2f74)Viy

(—4f13 + 2f63) Vs

(2135 + 265 + 2f73 + 235 + 2f31) Vio

(—2f33 — 236 — 2f5s + 2f11) Ve

(4f30 — 443 + Afs2 — 4f30 — 2f5s + 2f11) Vi

(—4f30 — Afa7 + Afis + Afss + 2fes — 2115 — 2170 — fio)Ved

(8fd1 +4fis — Afsz + 4f30 + 2[5 + 2f73 — 2f5) Vs

(=8fh — 43 — Afsa — 2fex — 2Fh — 2f3a+ 2f0+ 2055+ 2% + flo + F20) Vi
(—2f30 — 4fdo + 4f50 + 2f61 — fin)Vis

(2130 + 237 + 4fdo + 41ds + 2/39) Vs

(2f30 + fa3 + 4fdo + 2f 1o — Af50 + f10)Vir

(=2f30 = f33 — Js6 — 2F57 — 4fa0 — 21 — 4115) Vi

(8f31 — 4fd1 — 4fs5 — 261 — 2f75) Vo

(—8f31 — 4f3y + 4fd1 + 2fi3 + 4f35 + f1s + 2f1s) Vo

(—fiz = 2fe5 — 2f5n + 3 /2 + [1/2)VA
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210 + fi2 — Afds + 2f55 — f3/2 — fi6/2) Vi
8 a7 + 4f39 — Afse — 1714V
fas — f3s — 2f1s + f1s/2) Vi
2f1s + 8fs3 + 2fs6) Vi
2f79 — Afga + 2f37 — [33/2) Ve
2f79 — fao + Afsa — 2fs7 + 2fss — [51/2)Vir
Af7r — Afdy — 2fs9 — 2f50 — f15/2 + fio/4)Vis
Af7s + Afss + 2fsg + [i5/2 — fTo/4 — f30/4)VF
2f3s + f35/8) Vo
16 = 2fs6 — fis/HV&
2f75 — fa1 + 2fsr — fin/2)Vis
2f1 — 2f37 + 2fis) Vs
2f75 — fa1 — 2[39) Vda
2f76 + 239 + 2f50) Vs
—4fgs + 5/2 + f31/2) Vs
4f75+2f79+f80+4f85 [3/2)Vsy
5 — f78 2fs4 + f1s/4) Vsg
2f1 — Afa + fis/2 VY
2f5 — Afas + fir — [+ [V
2f5 — fis + fio — 207 — f33 + fou — i)V
2f7 — 2fas + f2/4— fR)V7
2f8 +2fa5 — 2010 + f5/2 — f6/2 — fis — 4i1)Vy
2fg — 4for + [is/4 — fTs/4 — [is/2 — 4ia)Vy
2flo — Afas — fla/d — Fis/A+ [Ts/2 — [Te/2 + [Tz + 8i2) Vi
2ty — Afag + [ — [+ [53/2 — f34/2 + 2i3) V]
2fly = 2fs0 = f3 = f§ = f&/2+ f31 — f3+ f35 — f3a + 8ia) Vi
2113+ 2f30 — fio/2 = F11/2 + fo1 — [3o + 4is) Vi3
2fly —Af31 — f3/2— f1/2+ f7/4— 4ig)Viy
2fl5 — 4f30 — fio/2 + f30/2 + 2i5) Vi
2fl6 — 2f33 — [3 — 2f3 + 2f5 — 2f3; + 2f3, + 8is) Vi
2filr + 2f33 + fio + [ + fTo + i3 — 2031+ 215 — 2f35 + 2135, + 4i5)Vi;
2fis = Afss + [T+ £3 + 5 + [T — 4io) Vi
2fly — 4f35 + fio + [ + fTa + [i5 — 2/T) Vi
2fa0 — 2f36 — fo +2f31 — 2f3)Vap
2fq1 + 2f36 — 205 — 215 — flo— fi — flo — fia + 2f351 — 2f5 + 2f3 — 2f35) Vo

e e T e a e i i e e e S S S e e a i i S
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—2f30 = 2f37 — [T = £3 — f3/2 — fo1 + [32) Vi

—2f33 4 2f37 + [3/2+ f5/2+ fio/2 + [ /2 + [io/2 — f50/2 — f51 + [5:) Vay
—2fis+ [T5/2 — [is/2 + 8ir) Vi),

—2fi5 — fia+ fis/2 + 4in) Vi

—2fls + fis/4 — [s/4 — 4ig) Vi

—2fi7 + flo/A — [3/A+ 4ig)Vi

~2fis — 4f7r + /4 + f3 /4 + dis — 4i1) Vi

—2fig + 2f79 + [io/A+ [T3/4+ f33/2 = F31/2 + 4is)Vig
—2f3 — 2f1g + [lo/A+ fi3/4 + fi7 + 8io)Vih

—2f5y —Afrr = [2)2 - [3/2 — [3/2 = fi/2 — 4in)Vay
—2fsy — Afdo — 2fg0 + fis — fio + fir — [ + [ — f35 + f34 — 8i10) Ve
~2fly — f3/2— [3/2 — 4i10)V3}

—2f3 + [is — fio + 2f% — f35 + f31 — 8i10) V&)

~2fs5 + Af1s + fi5/2 = fi6/2 — fis + 4i10) Vi

—2f35 + 2f1s — [7/8 — 2in1) Vs

—2f37 — 2f1s — [7/8 — fis/2)Viy

—2f35 — fio/2 + f30/2 — 8i12) Vi

—2f39 — f3 — f3 + 8i12) V5

—2fg0 + 2f30 — [To/2 = [1/2 — [T2)2 = f13/2 — f3i+ foa— fos+ f34 — 8i12) Vi
—2fe1 = 2fg0 — flo/2 = f1/2 = fa/2 = fis/2 — fi)Var
—2fgo — Afgo + 2fT0 — 23 + 2/5 — 2f35 + 2f34 — 8i13) Ve
—2fg3 + 4f17 — 235 + 2f3 — 8i13) Vs

—2fgy — [i5 + fio — 4i13) Vi

—2fg5 + [1/2 + [3/2 — dirg — 4i15)Vg;

~2fi6 + J3/2— i+ [ — [3+ S5 — 8i1a) Vi

—2fer + [3/2+ f1/2 + 4i15) Vs

—2fs + fio — 3o + dire — Sir7) Vi

—2fgo + 2fs1 — [§/2 = fo1 + [32) Vih

~2f0 = 2fa1 = f3/2 = f3/2 = S35 + F3u + 8ins) Vi

—2f7 — Afg1 + fio — fap — 8ir6 — Birr)VF

—2f5 — f3/2+ 3 — f3)Vah

—2f13 — fio + foo + 213 — 2f5:)Viy

—2f74+ fTo — foo + 2f35 — 2f34 — 24i17) V7,

—2fgo — fis/A+ fio/4 — 8i1s) Vi

—2fd3 — 4fo1 — fis/4)Vzs

e T T e T a e e i e e e S e e e S S
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+ o+ o+ + o+t

2fay — 8fg1 + fis/4 + 4irs) Vi
2fgs — Afoa — f/2+ [32/2 — foz/4 + f34/4 — 2i20)Ves
2fa + fis/4 — fis/4 — 2i19)Vig

2fas — 8far + [H)2+ [21/)2 — [5)2 + f2/2 — f3,/2 + 4ir9)Viy
2 fdy + 4iz0) Viy
2fa0 + fo/4 — [3/4) Vo.

(—
(—

(—

(=2fg7 + fin + [33/2 — [34/2 + 4i10) Vi
(—

(—

(—

The local supersymmetry is achieved when all the coefficients of the bases vanish. Thus we
have 264 simultaneous equations for 152 variables, and this requirement is quite nontrivial.?

5. Results

The cancellation of the supersymmetric variations ({.34) now gives us the 264 simultaneous
equations among the 152 variables of b} s, b%,Q, fioges fE.95 and d1.20. We solved these
equations by using computer programming, and found that solutions are represented by

15 parameters.
We can choose the following 15 coefficients

1 1 1 1 1 1 1 2
b3’ b5’ b8’ blO’ blla b12, b13a b2a

i7, 111, %14, 115, 918, 119, 120,

as independent parameters, and the other 137 variables are solved like

bi = b3,

by = 201 + 3203,

bi = —2b1 — 3203,

by = —16b3,

b = —bl —bly/2 + b, + 2bly + bi5/2 — 1663,
bsly = b%o - Qbh - 4b%2 - 5%3 - 32b%a

i = b3/

fi =blg/4 —bl1/2 — bly + 8b3 + iy + 4is,

f3 = —blo/2 + bl; + 2bly + 8b5 + 2i11 + 2i15 + Birs — 2i19 — Lino,

fa =blg/2 — bly — 21y + 643 + Siyy — Siys — 16719 — Sing,
4 = —b1o/16 + bi; /8 + bip/4 + b5 — i19 — i,

f5 = blo/4 = b11/2 — biy — 1605 + 4iso,

fo = —4bt — bly/4 + bl /2 + bly — 1603 + 8iy — 4iyg,

f7 = blo/4 = b1, /2 — bly — 28b5 — i1y — 8irg + dirg + dizo,

2The coefficient of Vi is 0, so we have 263 equations in fact.
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fg = —2b3 — blo/8 + byy /4 + b1y /2 — diz — 2i1g — 2in,

fa =bi/8 —biy/16 + bl1 /8 + bly/4 + 10b3 4 i1y — 19 — i20,

fio = —bi/4 — bly/8 + bl /4 + bly/2 + 1262 + 2i14 + 8iyg — 4iyg — 4ing,

fi1 = —bio/8 4 b1y /2 — bly/2 + 2i1s,

flg = —blo/4+ b1y /2 — 3bly — 16b5 + di15 — 16i1s + 8i1g + 4in,

fis = b11/2 — 2bly — 3263 — 4iyy — 1618 + 4i1g + Siso,

fiy = blo/8 — bl /4 4 3bly/2 + 1662 + 21 + 16015 — 6i1g — Gigg,

fis = —by/2 — blg/4 + bl /2 + bl + 16b3 + 4i1y — 4iy5 — 8iyg — 4ing,

fls = —bg + bis — 48b3 + 8iao,

iz = —bg — big/2 + b1y + 2b1y + 8irg + 8o,

fis = by /2 + bly/2 — bl — 2bly — bl /2 — 24b3 — 4iyy — 1618 + 8itg + Sino,
flg = —blo/2 + byy + 2bjy — 8i1g + 8its + 1619 + 8o,

fao = —big + 2b1; + 4biy + 64b3 — 8iy5 — Sirg — Sing,

fa = bly — 2b}, — 4bly — 96b3 — 8iyg + Siy5 + Sitg,

fag = bio/4 — b1, /2 — by — 24b3 — Siyq — diy5 + ding,

fa3 = —3blg/4 + 3b1,/2 + 3bly + 7263 + 41y + 4iyy + 16018 — 12019 — 16igg,
for = —b3/2,

fas = 403,

f216 = 453,

f217 = _bga

fag =0,

f219 = 2537

f30 = —blo/4+ b1y /2 + by — 8b3,
f31 =203,

f32 =0,

fz = 1603,

fiy = —8b3 + diyg,
fz5 = =803,

f3 = bio/2 — b1y — 2, — 1603,

fa = 163 — 4iy,

fag = —bio/4 + b1y /2 4 by + 1203 + 4iz — 4i1g — 4ino,

fig = —2b3 — 11,

fo = 8b3 — 2iy5 — 2i19 — ding,

fi =blo/4 — bl /2 — bly — 1203 — 8iyg + diyg + 4ing,

fio = blo/4 — b1y /2 — by — 3203 — 4iyg + 4iys + Sitg + 1200,
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fly = —blo/4 + bly /2 + bly — digg,
fia = —big/4+ b1 /2 + biy + 1203 + 4iz — 2i19 — 4ing,
fis = blo/16 — b1y /8 — bly/4 — 2i7 + i1g + iz,
Fig = —2b3 — i1y — diss,
fhr = —blo/8 + bl /4 + b1y /2 + 803 + 2014 — 2irg — s,
Fig = —blo/8 + by 4+ bly/2 + 4b3 + 214 — 2ino,
Fig = —8b3 — 2i1; — 8iss,
f30 = blo/8 — bl1/4 — bia/2 — 12b5 — 214 + 2irg + i,
[ = 8b3 — 2i14 + Sirg — 2iy0,
fhy = —8b3 — 16i1g + 4irg + 4in,
fas = 4b3 + 265 + Si1s,
f§4 = bh)/4 — bi1/2 — byy — 16b3 — 16115 + 4i19 + Sizo,
f35 = —Dlo/8 + biy /4 + bia/2 + 12b5 + 8irg — 2i19 — 2ino),
fag = —big/16 + b1, /8 + bly/4 + 8b3 + dirg — i19 — ino,
faz = 4b3 + iy + 4digs,
fas = bio/4 —bi1/2 — by — 3263 — diyy + 4iys + 8iyg + 12i0,
f39 = big/2 — biy — 21y — 32b5 — di1q + 415 + 8irg + 120,
fao = blo/4 — bly /2 — bly — 24b3 + 4iyg + ding),
far = —blo/4 + b1y /2 + bly + 24b3 + 4ing — it — 8irg — 12in9,
fea = 8iso,
fés = blo/2 — b}y — 2b1, — 16b3 + 164z,
foa = —803,
fe5 = —8b5 + 4ing,
fe6 = 16b3 + 4isy,
oz = —4b3 — 211 — 8iys,
fos = —bio/2 + biy + 2bi, — 8izo,
f9 = 24b5 — diy5 — dirg — i,
flo = —8b% — di1g + 4irg + Sizo,
fa = —8ix,
f1a = blo/4 = b]1/2 — biy — 24b5 — diyg + 4itg + dis,
f73 = 16b3 — 8irg,
74 = 16b3 — 8i1g — i,
75 = 205 + dixg,
flg = —blo/8 + bi1 /4 + bly/2 — 2ix,

1 2 .
f77 = 252 — 119,
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f13 =0,

f19 =0,

f30 =0,

f811 = b%0/4 - bh/2 - b%27

fga = blo/8 — biy /4 — bly/2 — 6b3 — disg + i19 + 2ino),

fas = blo/32 — bl1/16 — bly/8 — 3b3/2 +i19/2 + i90/2,

fas = —blo/32 + b1y /16 + biy/8 + 3b3 + 2i1s — i19/2 — i20/2,
fs5 = blo/16 — b1y /8 — bl /4 — 4b5 + i1g + in,

36 = —blo/8 + by /4 + bly/2 + 6b5 — 2i19 — 2ino,

f817 = b%o/8 - bh/‘l - 5%2/2 - 4b%a

fas = —4b5 — 2iao,

[ = 2in,

foo = —blo/8 + by /4 + bly/2 — 4in,
f911 = —55/4,

f912 = b§7

2 = 3205 — 8i11 + 16i14 + Si15 — 32i18 + Sitg,
f2 = 8i11 — 8i14 + 32015 + Sirg,
f3=—blg/2 + bl + 2b1y 4+ 963 + 8iyy — 16i15 + 32i18 — 24iyg — 24isg,
T =b10/2 — biy — 2bly — 11263 — 16i11 + 8iy5 — 6ditg + 24i19 + 24iap,
f2 = —blg + 201, 4 4bl, + 96b2 + 16714 — 1619 — 16i9,
f& = blg — 2b1; — 4b}y — 96b2 + 16i15 + 16i19 + 16ia,
f? =bly — 2b1, — 4bl, — 12863 — 1641, — 64i1g + 16719 + 16ing,
3 = big — 2b1; — 4bi, — 32i7 — 16015,
f3& = —2b1y + 4b}; + 8biy + 12863 4 32i7 + 16i14 — 32i19 — 32ino,
f2 = —3203 + 16iy5 + 16i19 + 16199,
fA = —biy + 2bly + 4biy + 128b2 + 16i11 + 64i1g — 16i19 — 16190,
fh = —bly + 2bl; + 4biy + 32i7 — 16i14,
fZ = 2bly — 4bj; — 8bly — 160b3 — 32i7 — 16i1; — 64i1g + 32019 + 32ino,
[ = —bio/4 + biy/2 + bly + 8b2 + 8iy — diyg — 4ing,
5 = =bio/2 + biy + 20}, + 8irg — Sisp,
f& =blg/2 — b, — 2b, — 48b% + 16i19 + g,
fE =bly/2 — bl — 20}, — 16b3 + iy,
fi = —big/4+ b1y /2 + biy + 16b3 — 4ijg — 4isg,
fZy = —64b3 — 64i15 + 16i19,
fay = biy — 2bl; — 4bly — 64b3 — 64i1g + 16i19 + 32in0,
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f3 =biy/2 — by — 2bly — 48b3 — 32015 + Siyg + Sing,
f3 =biy/2 — by — 2bly — 48b3 — 32015 + Siyg + Sing,
[ = —biy/2 + biy + 2b}y + 3263 + 32613 — Siyg — 16iag,
f3, = 16b3 + 32iy5,
[ = —biy/2 + bl + 2bly + 4863 + 32i1g — Siyg — Sing,
i1 = bi 4+ blo/8 — biy/4 — bly/2 — 2i7 + irg + 2iz,
ip = —b3 /16 — 3b5 — i11/2 + i19/2,
i3 = bl /4 — bly + 2iy5 + 2i1g + 4in,
iy = —bly — 16b3 — i1y + i15 — Siyg + 4itg + ding,
i5 = —bl/2 — blg/2 + biy + 2bly + 1663 4 4iyy — 4iy5 — Sirg — 12ino,
ig = —bi/4 — blg/4 + by /2 + bly + bly /4 + 8b3 4 2i14 — 4iyg — 4o,
is = 4b3 + i14 — i19,
ig = —bly/16 + bl /8 + bly/4 + 4b3 + i11/2 4 2i1g — i19/2 — do0,
i10 = 4b3 + 4iyg — iyo,
i12 = 8b3 + i14 — 15 — 219 — 20,
i13 = big/4 — by1/2 — bjy — 8b5 + 2i1g + diso,
ire = —bjo/6 + b1y /3 4 2b15/3,
i17 = —blg/12 + b1, /6 + bly/3 — 2in.

These solutions are the main result of our paper. We started from the higher derivative
effective action which contains 132 parameters. From the requirement of the local su-
persymmetry, the number of these parameters are reduced to 15. Therefore the higher
derivative effective action has 15 parameters at this stage.

The result (5.9) is obtained by employing the computer programming, so it is important
to justify it by comparing with the results established so far. Let us focus on the bosonic
part of the higher derivative effective action in more detail. By inserting the result (p.)
into the effective action, the purely bosonic part of it can be written as

LleRY pure + L[ee11 AR = + eRapcaRabed Re pgn Refgn x ()
+ eRapcdRabee Rapgh Repgn % (—16a)
+ eRaped Rabe f Redgh Re pgn % (2a)
+ eRapcdRaecg Ry fanRefgn % (16a) (5.3)
+ eRapee Rabdg Refan Refgn X (—32a)

)

+b)

1
+ 6Rabce Rabdf RcdghRefgh X | = Z
a

+ e]:Eabce]:Eadcg]:abfalh}%efgh X (32

1
B p1
T e A popus Rabpua s Reabpe pr Redps o Redpnopny X (ﬂa
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1
1 p11
+ ee€q; A,ulﬂQ,usRabmuzaRbcuachdusungamouu X <_6a )

where we defined
a="b3 b= —bjy+ 2by; + 4bi,. (5.4)

It is very surprising that the bosonic part of the higher derivative corrections are controlled
by only two parameters. This means that there are at most two superinvariants for the
higher derivative corrections. The remaining 13 parameters are redundant and will be
related to some linear combinations of @ and b when the cancellation which include the
4-form field strength is examined.

The bosonic part of the higher derivative effective action with the parameter a, which
is noted L, is deformed as

£a = a< + e]:Eabcd]:aabcd]:iefgh}%efgh - 16€RabcdRabceRdfghRefgh

+ 26]:Eabcd]:iabef RcdghRefgh + 166RabcdRaechbfthefgh
- 32€Rabce Rabdg Rcfdh Refgh + 326Rabce Radcg Rbfdh Refgh

M1 p11
+ ﬂ €11 Am 1213 Rabuws Rabue ur Rcdusug Rcdmouu

1
- éeﬁ o A,ul 23 Rabu4u5 Rbcuam Rcdusug Rdamoun >
1 4 1 4
= Ea tgtgeR - EEutgAR s (5.5)

where tg is a tensor with 8 indices and defined in the appendix [B. As discussed in the
introduction, this form precisely matches with the result obtained by evaluating the one-
loop scattering amplitude of massless closed strings. Though we do not explain explicitly, it
is also checked that the result in ref. [15], which includes the bilinear terms of the Majorana
gravitino, can be reproduced by appropriately choosing the remaining 13 parameters.

The bosonic part of the higher derivative effective action with the parameter b, which
is noted Ly, is transformed into

1
Ly = b< - ZeRabceRabdecdghRe tah + eRapce Radeg By panRe fgh>

= 21 32b<t8t86R4 + %6116116R4> . (56)
Again as discussed in the introduction, this form precisely matches with the result obtained
by evaluating the tree level scattering amplitude of massless closed strings.

Therefore we could derive the bosonic terms of the two superinvariants completely by
imposing the A/ = 1 local supersymmetry in eleven dimensions. Note that the Noether
method is very sensitive to miscalculations. One error is fatal to the result. So the expected
conclusion here implies the correctness of our procedure.
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Let us remind the discussions in the section f]. So far we have investigated the cancella-
tion of V' = 0 in the eq. (B.7), where the terms which are proportional to the field equations
are neglected. Our final task is to go into a question for the modifications of the super-
symmetric transformation rules in the eq. (B.§). Here we only consider the modification of
the transformation rule for the Majorana gravitino.

The variations which contain the field equation of the Majorana gravitino only come
from those of £[€R31/;¢(2)] and are written as

X, E(W)* C

- 2€(f11 RafbgRacdeRbcde + f21 RafbcRagdeRbcde + f31 RbfadchaeRbcde)gf}'thwgh
— 2¢( a4 Re fhiRaped Rabed + fa5Re fah Rbicd Rabed + a6 Rhiae Rbfed Rabed

+ farRefapRhicaRabed + fasRenav R picaRabed + f29Re fabRanca Rbicd

+ f3oRenabRafeaRoica + f31 Rhiab RaccdRofed + 32 Re fac Rbhad Rbicd

+ f33RenacRbfad Roica + f34BhiacRoead Rofed + f35Racch Rofdi Rabed

+ f3sRacch R fad Roica + f37Racoh R facd Rived)&e Vg Dgni (5.7)
- 2e(f?}8RefathgcdRabcd + f:slgRefabRghcdRabcd + inRefabRagcdehcd

+ fi1 RenabRafeaRoged + fisRe fac Rogad Rohed + i3 Rehac Rbfad Roged) Ve fo Ditbhi
— 2¢( f15Raeai RygveRanve + frRacab R fgacRonei)&Vde fgh Djtij
- 2e(f717RdeaingbcRajbc + f%SRijadRefbcRagbc + f?lngeainjbcRagbc

+ foRaeviRafej Raghe + fa1 Raeab R piac Rogei)&Vde g 1h Dntdij
— 2¢(f1 Redjk Re fabRyhab + foa Redaj Re ok Rohab)Vede fgh Vi Dithjk-

Then by using the eq. (2.19), we can read off the modification of supersymmetric transfor-
mation rule for the Majorana gravitino, §1%, = — X, as follows.

1
511/193 =+ ( — NzgVh + §7x')/gh> vt
Dh{(fllRafbgRacdeRbcde + fQIRafbcRagdeRbcde + f31 RbfadchaeRbcde)e}

2
+ < = 20k M — 5%7{%%) Vef

Di{(f34Re phiRapcaRabed + fasRe fah RbicdRabed + a6 Rhiae Rofed Rabed
+ fy7RefabRhicaRabea + fas RenabRpicalabed + f29RefabRahcaRbica
+ faoRenab RafeaRica + f31 RhiavRaccaRofed + f32RefacRohad Rvicd
+ fi3RenacRofadRvica + 34 RhiacRocadRofed + f35Racch Rofdi Rabed
+ fi5Racch RofadRvica + 37 Racbh R faca Rived)€}

1
- ( — NzhYi + §7x’)/hz> Vefg

Di{(f3gRe fah RogedRabed + FigRe fab RohedRaved + fioRe fabRaged Rbhed
+ fi1 RehabRafeaRoged + fiaRe fac Rogad Rohed + i3 RehacRbfadRogea)et  (5.8)
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1
+ < — Ny + §%:%'j>wefgh

Dji{(f75Raeai R tgbe Ranbe + f16Rdeab R fgacRonei )€}

2
- ( = 2Mk[iNjle — §’Yﬂ[ﬂ7ﬂk> Vdefg

Dk{(f%7RdeaingbcRajbc + f718RijadRefbcRagbc + f%ngeainjbcRagbc
+ fsloRdebiRafchagbc + fé%lleeabeiacRbgcj)E}

2
+ < - Qnm[jnk]a: - §7x7[j77k]m> Vedefgh

Dy {(f31Reajk RefabRghav + o2 Redaj Re ok Rghab)€}-

In this expression we neglect the torsion terms. The coefficients are chosen as the eq. (§.9).

6. Conclusions and discussions

In this paper we constructed the part of the higher derivative effective action of the M-
theory by applying the Noether method with respect to the A" = 1 local supersymmetry.
The Noether method also makes it possible to derive the modifications of the supersym-
metric transformation rules.

The ansatz for the higher derivative effective action is given by the sum of L[eR*],
Llee11 ARY], E[eR?’?/_)z/)(g)] and £[6R21Z(2)D¢(2)], which are given by the egs. ([L.5), (7)), (9)
and ([.11) respectively. The ansatz contains totally 132 terms. The variations of the ansatz
are expanded by the 264 bases of V[eR*e)], V[eRQDRéw(Q)] and V[eR?’EDw(Q)], which
are given by the eqs. (f.16), (B.18) and ([.19) respectively. The terms of V[eR*&)] and
V[eR3€D1(s)] are related by the 20 identities (f.20). The results of the variations of the
ansatz are expanded by the 264 bases as the eqs. ([£24), ({.25), ({.29) and ({.31). Notice
that these variations do not contain terms which are proportional to the field equations.

The N = 1 local supersymmetry requires the cancellation of the variations, and it gives
us 264 simultaneous equations among the coefficients of the terms in the ansatz. We
found that the 15 parameters (f.I]) are not determined and the other coefficients are solved
like (F.9).

Among 15 parameters, only two are related to the coefficients of the bosonic part. As a
result, we obtained two candidates of the superinvariants which completely match with the
results obtained by type IIA string perturbative calculations. We also derived the higher
derivative modifications to the supersymmetric transformation rules (5.§). Thus it seems
that the local supersymmetry is powerful enough to determine the structure of the higher
derivative effective action.

As a next future work, we will try to construct the effective action of the M-theory
which includes the terms which depend on the 4-form field strength [R9]. Though there are
difficulties to treat the vast number of 4-form field strength terms as well, the techniques
here, namely the calculations by hand and computer programming, will lead us to the
complete effective action of the M-theory.
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Following works in refs. [B0, B, it has recently been shown that if we take into account
higher derivative corrections to the effective action of heterotic string theory, the entropy
of the black hole computed from the degeneracy of elementary string states agrees with
the entropy computed from the classical calculation [BJ]. So if we can obtain the higher
derivative corrections including the R-R potential terms in the type ITA superstring theory,
it is interesting to apply them to the special cases of black hole whose entropy vanishes in the
classical supergravity, for example, the supertube solutions with two charges. The corrected
supersymmetric transformations will also be useful to investigate them. Applications to
black hole physics, brane solutions or cosmology are also important directions [B3-Bj|.
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A. Notations

Field content of the 11 dimensional supergravity consists of the vielbein e*,, the Majorana
gravitino v, and the three-form potential A,,,. The spin connection wuab is the gauge
field for the local Lorentz group and expressed by other fields as

ab . _av bp c bp a __ _ap b
wu” = —eMele ety + ePOet ) — e O)ey

+ eayebp(ru[w)] = Lo + Lol (A1)

To derive this equation we used the vielbein postulate D,e”, + I',,e?, = 0. The I'’,,

is the connection and the 7%, = 21"/ ] is the torsion. The indices in the brackets are

(v
antisymmetrized completely. By solving the equation of motion for the spin connection,

the torsion is written by a bilinear of the Majorana gravitino.

1 1
TP = ZT/J[;L’YP%/} - gwa'ﬂwp ipg. (A2)

The field strengths are defined as follows.

Rab;w = 2a[uwy]ab + 2W[“acwy}6b, Raped = eﬂceydRabuw
Y = 2Dy, Yab = 2Dy, (A.3)
F,ul/po = 4a[uAupa}a Faped = eﬂaeybepceodF;wpa-

For the calculation, we use following notations.

n(n+1)

TZJM = _1/};1;0717 CT = _07 X = CXTC?I? ,},_n = (_1) 2 ,Yn
U1 Xy = e Xip1, DeXtp~ —eD(Xvp), 11X Dby ~ —thyD(X1)y) (A.4)
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The last approximations are the equations up to the total derivative.
The supersymmetry transformations of the building blocks are given by

de = g’Ya%,
ORuped = —Rapee€VeVa + Rapde€Vee + 2D[06wd}ab + TecadWeap-
69 = d1Dge + doFojivinie + dsFijrvijriac + O(%?),

1 . o
5¢ab = Zlexyab'mee + 2d2D[a(Fb}jkl’7]kl€) + 2d3D[a(F2JM7Uklb]€) + O(wQ)a (A5)
0 Fgped = _4Fe[bcdgr76¢a] + 4d4D[a(€7bcwd]) + 4d5D[a(Er7bcde¢e]) + O(¢3)a

where d1 = 2, d2 = —%, dg = TLU d4 = —3 and d5 = 0.

B. The structure of tstsR* and €161 R?

In this section, we show the structure of tgtgR* and €;1e1 R* explicitly.
The definition of tgdeef 9" R Roca Rae 7Rygn is given by

tgb“l"’f 9" Ry ap Raca Rse Ragn
= —2(trRy RaotrR3 Ry + trRy Ratr Ro Ry + tr Ry Rytr Ra R3)
+ 8(trR1 RoR3 Ry + trR1 R3RoRy + trRy1 Rs R4 R2) (B.1)
= —2(Ryap Rova R3caRade + Riab R3pa R2ca Rade + Riab Rava Roca R3ac)
+ 8(R1ab Robe R3caRada + Riab R3pe RocaRada + Riab R3peRacaRoda)-

Then the 4-point amplitude term tgtgR* are

ijklmnpq,abedefgh
tg tg RijabRklcdRmneprqgh

= —Qtéjklmnp YRy jab Riiba Rmncd Rpgde + RijabRmnba RiicdRpgde + RijabRpgba Rkica Rimndc)
+ 8téjklmnpq(Rz‘jabszbcRmncdquda + RijabRimnbe RiicdRpgda + Rijab Rmnbe Rpged Rkida)

= +12(Rapea R*)? + 24R;jap Rijea Runnab Rined
— 96R;jap RijcaRmnad Rmncy — 192Rijab Rijbe Rimncd Rmnda (B.2)
+ 192R;jap Rjkve Rrica Riida + 384 jab Riipe Rjkca Riida

= 12(A; — 1645 + 245 — 3245 + 1646 + 3245) .

Here we give definitions again. pu,v are general coordinates indices and a,b are Lorentz
indices. Ay,... Ay are given by eq. (L.6).
. 4 afyijklmn .
The topological term, e11e11R* = 61{%/] pqenam“deefghRijabRklcdRmneprqgh, is
expressed as

1 g
ST eilllﬁvuklmnpq €11 amabcdefgh Rijas RiteaRonne f Roggh
= fifig:}gz} RijabRklcdRmneprqgh
1
= (A1 — 1643 + 245 + 164, — 3245 + 164 — 3247). (B.3)
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Finally we obtain

tsts R + er1e11 R = 12(A; — 164y + 243 — 3245 + 16A¢ + 3247)

4 -3
—12(A; — 16A2 + 2A3 — 32A5 + 1646 — 32A7 + 16A4)

1
=3.28 <A7 — ZA4> , (B.4)

which corresponds to eq. (.6).

C. Classifications of [R?], [R?], [R!] and [R?*DR]
e Classification of [R?).

The types of [R?] are classified by the positions of the contracted indices. As an example,
let us consider a quadratic term R p.qR p.q Wwhere b, c and d are the contracted indices and
blanks are arbitrary. This term is classified by the positions of the contracted indices as
{3,3}{3}. The {3,3} shows that the number of the contracted indices in each Riemann
tensor. That is, the first and the second Riemann tensor contains three contracted indices,
respectively. The contracted index b is contained in the first and the second Riemann
tensor, so the numbers (1,2) are assigned for this index. Similarly for the indices ¢ and d,
the numbers (1,2) are assigned, and totally this example has the numbers of (1,2)3. The
{3} represents the number of the power of (1,2)%. The numbers are aligned in order of
rising. Thus the example R p.qR peq is classified by the numbers of {3,3}{3} which are not
affected by the properties of the Riemann tensor. The types of [R?] are classified in this
way and the complete list is given as follows.

{Li{1} R 4R 4
{2,2H2}  Rc4Rca,
{333} R peal? beas (C.1)
{4,414} RapcaRabed-

The above result is checked both by hand and by the computer programming independently.

e Classification of [R3].

The types of [R?] are classified by the positions of the contracted indices. As an example,
let us consider a cubic term R R p 4R p.q Where b, ¢ and d are the contracted indices
and blanks are arbitrary. This term is classified by the positions of the contracted indices
as {1,2,3}{1,2}. The {1,2,3} shows that the number of the contracted indices in each
Riemann tensor. That is, the first Riemann tensor contains one contracted index, the
second does two and the third does three. The contracted index c is contained in the first
and the third Riemann tensor, so the numbers (1,3) are assigned for this index. Similarly
for the indices b and d, the numbers (2,3) are assigned, and totally this example has the
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numbers of (1,3)1(2,3)2. The {1,2} represents the numbers of the powers of (1,3)! and
(2,3)2. The numbers are aligned in order of rising. Thus the example R R j, gR peq is
classified by the numbers of {1,2,3}{1,2} which are not affected by the properties of the
Riemann tensor. The types of [R?] are classified in this way and the complete list is given

as follows.

{Oa 1’ 1}{1} R R dR ds

{0,2,2}{2} R R 4R .4

{1a1’2}{1’1} R CR dR c dy

{Oa 3’3}{3} R R bcdR bed s

{1,2,3}{1,2} R R aR peds

{252’2}{1’15 1} R b CR b dR c dy

{O, 47 4}{4} R RabcdRabcd7 (Cz)
{L 3’4}{1’3} R aR bcdRabcda

{27274}{272} R a cR b dRabcda

{2,3,3H{1,1,2} R o bR acal bedy, R o R bad R beds

]

{25 4) 4}{1, 15 3} R e aRebcdRabcda
{37 37 4}{17 27 2} R eabR ecdRabcd7 R aecR bedRabcda

{45 4, 4}{2, 25 2} RefabRefcdRabcd, ReafcRebdeabcd-

The above result is checked both by hand and by the computer programming independently.

e Classification of [RY).

The types of [R*] are classified by the positions of the contracted indices. As an example,
let us consider a quartic term R ¢ R cqf R pcqaRabed Where a, b, ¢, d, e and f are contracted
by the flat metric and blanks are arbitrary. This term is classified by the positions of the
contracted indices as {2,3,3,4}{1,2,3}. The {2,3,3,4} shows that the number of the
contracted indices in each Riemann tensor. That is, the first Riemann tensor contains two
contracted indices, the second does three, the third does three and the fourth does four.
The contracted index a is contained in the second and the fourth Riemann tensor, so the
numbers (2, 4) are assigned for this index. In a similar way the numbers (3,4), (3,4), (3,4),
(1,2) and (1,2) are assigned for the indices b, ¢, d, e and f, respectively, and totally this
example has the numbers of (2,4)1(1,2)%(3,4)3. The {1,2,3} represents the numbers of
the powers of (2,4)!, (1,2)? and (3,4)3. The numbers are aligned in order of rising. Thus
the example R ¢ fR cqfR pcaRabed is classified by the numbers of {2,3,3,4}{1,2,3} which
are not affected by the properties of the Riemann tensor. The types of [R*] are classified
in this way and the complete list is given as follows.
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{0,0,2,2}{2}
{0,1,1,2}{1,1}
{1,1,1,1}{1,1}

{0,0,3,3}{3}
{0,1,2,3}{1,2}
{1,1,1,3}{1,1,1}
{0,2,2,2}{1,1,1}
{1,1,2,2}{1,1,1}
{1,1,2,2}{1,2}

{0,0,4,4}{4}
{0,1,3,4}{1, 3}
{0,2,2,4}{2,2}
{1,1,2,4}{1,1,2}
{0,2,3,3}{1,1,2}
{1,1,3,3}{1,3}
{1,1,3,3}{1,1,2}
{1,2,2,3}{1,1,2}
{1,2,2,3}{1,1,1,1}
{2,2,2,2}{1,1,1,1}
{2,2,2,2}{2,2}

{0,2,4,4}{1,1,3}
{1,1,4,4}{1,4}
{1,1,4,4}{1,1,3}
{0,3,3,4}{1,2,2}
{1,2,3,4}{1,1,3}
{1,2,3,4}{1,2,2}
{1,2,3,4}{1,1,1,2}
{2,2,2,4}{1,1,1,2}

{1,3,3,3}{1,1,1,2}
{2,2,3,3}{2,3}
{2,2,3,3}{1,1,1,2}
{2,2,3,3}{1,2,2}

{2,2,3,3{1,1,1,1,1}

{0,4,4,4}{2,2,2}

=S~ IS =v I~V IR~ BENN~vINE=vINN~ N= B~ = JE=v N ~v IR~ AN~V R~ ~vINE=vINE~ BN~V BN~ NN~ JNR~vIRR~v IR~ JNN=v = Il~vIE~vINN=S I~V I~V =~

a

]

S|

a

R R c dR c dy
cR dR c d»y
R aR 4,

R peaR beds
R b al? bed,
v R 4R beds

Ry cRypaR ¢ a,
VR R aR ¢ 4
vR pR ¢ aR ¢ 4,

=vRNN= VR~V =V

Rabcd Rabcd )
a R bed Rabcd )

Ry aRaped,

S|

Ry aRaped,

s)

bR acd R veds

al ped R peds

s)

bR acaR beds
R b aR ped,
bR o aR beds
Ry aR ¢ g,
bR ¢ aR ¢ a5

Q

s)
S]

=v I~V IN~V I~ V=V INN~ IR~V IR =v IR =+
S}

o
IS

RS
IS IS]

=y
S

bRaecd Rbecd )

L

e Rabcd Rabcd )
aR bRaecdeecda
R eabR ecdRabcd7
eR e aR bcdRabcda
eR a bR cedRacbd7
aR e bR ecdRabcda
aR e bR c dRacbda

eR aebR acdR bedy
aR e aR bcdR beds
aR e bR acdR bedy
bR c dR aebR ced»
CR b dR aebR ced

R Refab Refcd Rabcd )
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R

R

R

R a cR badR bed s

aR bR cadR cbd»

R aebR cedRacbda

aR e bR cedRacbd,

eR aebR cadR cbd»

R e aR e bR cadR cbd»

R a dR b CR aebR ced>

R

Reabeecdeacbda



{1,3,4,4}{1,1,1,3}
{1,3,4,4}{1,1,2,2}
{2,2,4,4}{2, 4}
{2,2,4,4}{1,1,1,3}
{2,2,4,4}{2,2,2}
{2,2,4,4}{1,1,1,1,2}
{2,3,3,4}{1,2,3}
{2,3,3,4}{1,1,2,2}

{2,3,3,4}{1,1,1,1,2}

{3,3,3,3}{3,3}
{3,3,3,3}{1,1,2,2}

{3,3,3,3}{1,1,1,1,1,1}

{2,4,4,4}{1,1,2,3}
{2,4,4,4}{1,1,1,2,2}
(3,3,4,4}{3,4}
{3,3,4,4}{1,1,2,3}
{3,3,4,4}{1,2,2,2}
{3,3,4,4}{1,1,1,1,1,2}

{3,3,4,4}{1,3,3}

{3,3,4,4}{1,1,1,2,2}

{4,4,4,4}{4,4}
{4,4,4,4}{1,1,3,3}
{4,4,4,4}{2,2,2,2}
{4,4,4,44{1,1,1,1,2,2}

R qebRapeaRyfeds
eR fabRefcdRabcda
fR e fRabcdRabcda

3

ol ¢ vRafcaRyfeds

a

iR o pRecpaRachd,

a

a

all 5 vRefealabed

a

R caf R veaRabed,
R cav R peaRapeds

[

bR cef R defRachd,

S|

=i~y IE=vI=V I~~~ IR~ =V I v

alt evf R peaRabed,
R ¢ oR e R craRacbds
R capR cavR feaR fed,
R cp R bR ccall fed,
R 4o R oo R ceaRR cpa,
R 4ecR peaR afp R cfa,
R gecR peaR afpR e,

®

R ¢ fReafpRageaRogeds
R ¢ tRegabRygcaRabed,
R ctgR cpgRapcaRabed,
R 4ef R pefRageaRoged,
R cpgR cavRygeaRabeds
R 4ef R pegRygeaRabed,
R 4ef R pegRycgaRacha,
R 4fgR peaReafgRebeds

R agbR dfcReabeecgd7
R bgaR dfcReabeecgd,

RopcaRaped RepgnRefgn,
RopcaRapee Rapgh Repghs
RapeaRave f Reagh Refan
Ropce Rapdg RefanRefgn,
Rapee Radgeg RyfanRefgh-

R eR abeecdeacbda

R e aR f bRecdeacbd7

R ¢ R qebR craRachd,
R 4 bR ccf R caf Racod,
R ¢ oR fpeR peaRaped,
R ¢ oR fpeR cpraRacbas

R aebR abe ecdR feds

R eacR bedR abe cfds
R eacR bedR abe dfcs

R e fReagbecngacbd,

R cofR vy RagedRygeds
R fegR qepRycgaRachd,
R 4efR gepRygeaRabeds
R 4efR gepRpcgaRachds

R agbR cdeeabeecgah

RabcdRaecg Rbfdh Refgh )
Rabce Rabdf RcdghRefgh 3

The result there is checked both by hand and by the computer programming independently.

e Classification of [R2DR] with the index of the covariant derivative unfilled.
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The types of [R?DR] are classified by the positions of the contracted indices. As an
example, let us consider a quartic term R . 4R pq¢DpER  , where b, ¢ and d are contracted
by the flat metric and blanks are arbitrary. This term is classified by the positions of
the contracted indices as {2,3,1}{1,2}. The numbers of 2 and 3 in {2,3,1} represent the
numbers of the contracted indices in the first and the second Riemann tensor, respectively.
The last number 1 in {2,3,1} represents the number of the contracted indices in the
covariant derivative and the third Riemann tensor, because the indices of the covariant
derivative and the third Riemann tensor can be exchanged by using the Bianchi identity
of the Riemann tensor. Thus the index of the covariant derivative is grouped into the
position of the third Riemann tensor. The contracted index b is contained in the second
Riemann tensor and the third position, so the numbers (2,3) are assigned for this index.
In a similar way the numbers (1,2) are assigned both for the indices ¢ and d, and totally
this example has the numbers of (2,3)(1,2)2. The {1,2} represents the numbers of the
powers of (2,3)! and (1,2)2, where the numbers are aligned in order of rising. Thus the
example, R . 4R waDpyR , is classified by the numbers of {2,3,1}{1,2} which are not
affected by the properties of the Riemann tensor. The types of [R2DR] with the index of
the covariant derivative unfilled are classified in this way and the complete list is given as
follows.

{0,1,1}{1} R R DR 4

{1’150}{1} R dR dD R 5
{0,2,2}{2} R R.4D R . g,
{17172}{17 1} R cR dD R c d
{1,2, 1}{1, 1} R R.4DR g,
{2,2,0}{2} R.4R.4qD R |
{0’353}{3} R R bcdD R bedy
{17273}{172} R bR c dD R cbd»
{1,3,2}{1,2} R R 44D R . g,

{2,2,2}{1,1,1}
{2,3,1}{1,2}
{3,3,0}{3}

{0,4,4}{4}
{1,3,4}{1,3}
{2,2,4}{2,2}
{1,4,3}{1,3}
{2,3,3}{1,1,2}
{2,4,2}{2,2}
{3,3,2}{1,1,2}

Ry .RyaD R, g
R . gR pqD R,
R peaR pedD R,

R RapcaD Rabed,
R 4R peaD Rabeds
R o R b aD Rapeds
R 4RapedD R peds
R o bR caaD R cbd,
R o cRapedD R b 4,
R cadR cbaD R o b,
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R 4 yR gocD R o,

R gacR cpaD R 4,



{3,4,1}{1, 3}
{4,4,0}{4}
{2,4,4}{1,1,3}
{3,3,4}{1,2,2}
{3,4,3}{1,2,2}
{4,4,2}{1,1,3}

R peqRapeaD R 4,
RabcdRabcdD R )

R o pRaecdD Rpecd,
R aecR bedD Raped,
R aecRabedD R ped,
ReoecdRbecaD R o b,

R ceaR bedD Rabcda
R ceaRabcdD R bed>

The result above is checked both by hand and by the computer programming independently.

e Classification of [R?DR] with the index of the covariant derivative filled.

The types of [R2DR] with the index of the covariant derivative filled are classified as like
the above and the complete list is given as follows.

{1,1,21{1,1} R R 4D.R g,
{0,2,2}{2} R R.:4D.R g
{1,2,1H{1,1} R 4R .4D.R
{1,2,3}{1,2} R wRcaDyR ca, R Ry aDpR ¢ 4,
{0,3,3H{3} R R paDvR ¢ 4,
{2,221, 1,1} Ry R caDyR 4
{1,3,2H{1,2} R R aaDyR 4, R R acDyR 4,
{2,3,1H{1,2} R ¢ R aaDoR
{1,3,4}{1,3} R 4R caaDaR cba;, R R gacDaR chas
{0,4,4}{4} R RapcaDaR ped,
{2,2,4}{2,2} R o pR ¢ aDoR cpa,

{2,3,3}{1,1,2}

R a bR cbdDaR c dy
Ry R gapDoR ¢ 4,

R b cR badDaR c d»y

{1,4,3}{1,3} R pRackaDaR ¢ 4,
{3,3,2H{1,1,2} R caaR wdDaR b, R dacR waDaR
{2,4,2}{2,2} R ¢ aRacbaDaR o,
{3,4,1H{1,3} R pedRapeaDaR
{1,4,5}{1,4} R ¢RapeaDeRaped
{2,3,5H2,3} R ¢ oR peaDeRabeds

{2,4,4}{1,1,3}
{3,3,4}{1,2,2}

{3,4,3}{1,2,2}

R o pRecadDeR chds
R aebR ceaDal? chd,
R peaR cedDal¥ cod,
R cadRecviDeR o b,
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R o pRedacDeR cbd,
R 4ebR decDaR cod,
R peaR decDal cod,
R dgacRecbaDeR o b,



R aecRabcdDeR b ds
{47 47 2}{17 17 3} RebcdRabcdDeR a

{37 47 5}{17 27 3} R abeaecdeRbecda R bfaRaecdeRbecah
{47 47 4}{27 27 2} RfaecRabcdeR bed > RfceaRabcdeR bed-

The result above is checked both by hand and by the computer programming independently.
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